575
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new algorithm for computing regular representations for radicals of parametric differential ideals

, & | (Reviewing editor)
Article: 1507131 | Received 06 Mar 2018, Accepted 18 Jul 2018, Published online: 28 Aug 2018

References

  • Becker, T., & Weispfenning, V. (1991). Gröbner bases: A computational approach to commutative algebra, graduate texts in mathematics (Vol. 141). New York, NY: Springer.
  • [Boulier, F.(1994). Étude et Implantation de Quelques Algorithmes en Algébre Différentielle ( PhD thesis). Université Lille I, 59655, Villeneuve d’Ascq, France.
  • Boulier, F. (2007). Differential elimination and biological modelling, radon series on computational and applied mathematics. Gröbner Bases in Symbolic Analysis, 111-139.
  • Boulier, F. (2018). The management of parameters in the MAPLE differentialalgebra package. working paper or preprint (never published). Retreived from https://hal.archives-ouvertes.fr/hal-01825191.
  • Boulier, F., Lazard, D., Ollivier, F., & Petitot, M. (1995). Representation for the radical of a finitely generated differential ideal. In ISSAC’95, International Symposium on Symbolic and Algebraic Computation (pp. 158–166). Retrieved from http://hal.archives-ouvertes.fr/hal-00138020
  • Boulier, F., Lazard, D., Ollivier, F., & Petitot, M. (2009). Computing representations for radicals of finitely generated differential ideals. Applications Algebra Engrg Commission Computation, 20, 273–321.
  • Buchberger, B. (1979). A criterion for detecting unnecessary reductions in the construction of Gröbner bases, In symbolic and algebraic computation, EUROSAM’79, Internat. Symposium Marseille Lecture Notes in Computer Science, Springer, Berlin, 72, 3–21.
  • Cox, D., Little, J., & O’Shea, D. (1992). Ideals, varieties and algorithms. an introduction to computational algebraic geometry and commutative algebra, undergraduate texts in mathematics. New York, NY: Springer.
  • Harrington, H. A., & Van Gorder, R. A. (2017). Reduction of dimension for nonlinear dynamical systems. Nonlinear Dynam, 88, 715–734. doi:10.1007/s11071-016-3272-5
  • Hubert, E. (2000). Factorization free decomposition algorithms in differential algebra. Journal Symbolic Computation, 29(4–5), 641–662.
  • Hydon, P. E. (2000). Symmetry methods for differential equations. Cambridge: Cambridge University Press.
  • Jauberthie, C., Trave-Massuyes, L., & Verdiere, N. (2016). set-membership identifiaility of nonlinear models and related parameter estimation properties. International Journal Applications Mathematical Computation Sciences, 26, 2083–8492. doi:10.1515/amcs-2016-0057
  • Kolchin, E. R. (1973). Differential algebra and algebraic groups. New York, NY: Academic Press.
  • Mansfield, E. L., & Clarkson, P. A. (1997). Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations. Journal Symbolic Computation, 23, 517–533. doi:10.1006/jsco.1996.0105
  • Montes, A. (2002). A new algorithm for discussing Gröbner bases with parameters. Journal Symbolic Computation, 33, 183–208. doi:10.1006/jsco.2001.0504
  • Ritt, J. F. (1950). Differential algebra. New York, NY: Dover.
  • Rosenfeld, A. (1959). Specializations in differential algebra. Transactions Amer Mathematical Social, 90, 394–407. doi:10.1090/S0002-9947-1959-0107642-2
  • Sabzevari, M., Hashemi, A., Alizadeh, B. M., & Merker, J. (2016). Lie algebras of infinitesimal CR automorphisms of weighted homogeneous and homogeneous CR-Generic submanifolds of CN. FiloMat, 30(6), 1387–1411.
  • Sit, W. Y. (2002). The Ritt-Kolchin theory for differential polynomials. In L. Guo, W. F. Keigher, P. J. Cassidy, & W. Y. Sit (Eds.), Differential algebra and related topics (pp. 1–70). World Scientific Publishing Co. Inc. Retrieved from https://doi.org/10.1142/9789812778437_0001
  • Umirbaev, U. (2016). Algorithmic problems for differential polynomial algebras. Journal Algebra, 455, 77–92. doi:10.1016/j.jalgebra.2016.02.010