2,581
Views
26
CrossRef citations to date
0
Altmetric
PURE MATHEMATICS

Approximation by finite mixtures of continuous density functions that vanish at infinity

, ORCID Icon, & | (Reviewing editor)
Article: 1750861 | Received 04 Dec 2019, Accepted 29 Mar 2020, Published online: 28 Apr 2020

References

  • Bacharoglou, A. G. 2010. Approximation of probability distributions by convex mixtures of Gaussian measures. Proceedings of the American Mathematical Society, 138:2619–18.
  • Barron, A. R. (1993). Universal approximation bound for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930–945. doi: 10.1109/18.256500
  • Bartle, R. G. (1995). The Elements of Integration and Lebesgue Measure. Wiley.
  • Cheney, W. & Light, W. (2000). A Course in Approximation Theory. Brooks/Cole.
  • Conway, J. B. (2012). A Course in Abstract Analysis. American Mathematical Society.
  • DasGupta, A. (2008). Asymptotic Theory Of Statistics And Probability. Springer.
  • De Branges, L. 1959. The Stone-Weierstrass theorem. Proceedings of the American Mathematical Society, 10:822–824.
  • Devroye, L. & Lugosi, G. (2000). Combinatorial Methods in Density Estimation. Springer.
  • Donahue, M. J., Gurvits, L., Darken, C. & Sontag, E. (1997). Rates of convex approximation in non-Hilbert spaces. Constructive Approximation, 13(2), 187–220. https://doi.org/10.1007/BF02678464
  • Everitt, B. S. & Hand, D. J. (1981). Finite Mixture Distributions. Chapman and Hall.
  • Feichtinger, H. G. (1977). A characterization of wiener’s algebra on locally compact groups. Archiv der Mathematik, 29(1), 136–140. https://doi.org/10.1007/BF01220386
  • Folland, G. B. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley.
  • Forbes, F. & Wraith, D. (2013). A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweights. Statistics and computing, 24(6), 971–984. https://doi.org/10.1007/s11222-013-9414-4
  • Fruwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer.
  • Fruwirth-Schnatter, S., Celeux, G., & Robert, C. P. (editors). (2019). Handbook of Mixture Analysis. CRC Press.
  • Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of statistics, 20(1), 608–613. https://doi.org/10.1214/aos/1176348546
  • Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694
  • Lee, S. X. & McLachlan, G. J. (2016). Finite mixtures of canonical fundamental skew t-distributions: the unification of the restricted and unrestricted skew t-mixture models. Statistics and computing, 26(3), 573–589. https://doi.org/10.1007/s11222-015-9545-x
  • Li, J. Q. & Barron, A. R. (1999). Mixture density estimation. In S. A. Solla, T. K. Leen, & K. R. Mueller (Eds.), Advances in neural information processing systems (Vol. 12, pp. 279–285). MIT Press.
  • Lindsay, B. G. 1995. Mixture models: theory, geometry and applications. In NSF-CBMS Regional Conference Series in Probability and Statistics. Hayward.
  • Makarov, B. & Podkorytov, A. (2013). Real Analysis: Measures, Integrals and Applications. Springer.
  • McLachlan, G. J. & Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering. Marcel Dekker.
  • McLachlan, G. J. & Peel, D. (2000). Finite Mixture Models. Wiley.
  • Mengersen, K. L., Robert, C. & Titterington, M. (2011). Mixtures: Estimation and Applications. Wiley.
  • Nestoridis, V. & Papadimitropoulos, C. (2005). Abstract theory of universal series and an application to Dirichlet series. Comptes Rendus Academy of Science Paris Series I, 341(9), 530–543. doi: 10.1016/j.crma.2005.09.028
  • Nestoridis, V., Schmutzhard, S. & Stefanopoulos, V. (2011). Universal series induced by approximate identities and some relevant applications. Journal of Approximation Theory, 163(12), 1783–1797. https://doi.org/10.1016/j.jat.2011.06.001
  • Nestoridis, V. & Stefanopoulos, V. 2007. Universal series and approximate identities. Technical report.
  • Nguyen, H. D. & McLachlan, G. J. (2019). On approximations via convolution-defined mixture models. Communications in Statistics - Theory and Methods, 48(16), 3945–3955. In press. https://doi.org/10.1080/03610926.2018.1487069
  • Peel, D. & McLachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and computing, 10(4), 339–348. https://doi.org/10.1023/A:1008981510081
  • Rakhlin, A., Panchenko, D. & Mukherjee, S. (2005). Risk bounds for mixture density estimation. ESAIM: Probability and Statistics, 9, 220–229. https://doi.org/10.1051/ps:2005011
  • Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill.
  • Sandberg, I. W. (2001). Gaussian radial basis functions and inner product space. Circuits, Systems and Signal Processing, 20(6), 635–642. https://doi.org/10.1007/BF01270933
  • Schlattmann, P. (2009). Medical Applications of Finite Mixture Models. Springer.
  • Stone, M. H. 1948. The generalized Weierstrass approximation theorem. Mathematical Magazine, 21:237–254.
  • Titterington, D. M., Smith, A. F. M. & Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley.
  • van de Geer, S. (2003). Asymptotic theory for maximum likelihood in nonparametric mixture models. Computational Statistics and Data Analysis, 41(3–4), 453–464. https://doi.org/10.1016/S0167-9473(02)00188-3
  • Walker, J. L., & Ben-Akiva, M. (2011). Advances in discrete choice: mixture models. In A. De Palma, R. Lindsey, E. Quinet, & R. Vickerman (Eds.), A Handbook of transport economics (pp. 160–187). Edward Edgar.
  • Xu, Y., & Light, W. A. (1993). and E W Cheney. Constructive methods of approximation by ridge functions and radial functions. Numerical Algorithms, 4(2), 205–223. https://doi.org/10.1007/BF02144104
  • Yona, G. (2011). Introduction to Computational Proteomics. CRC Press.
  • Zeevi, A. J., & Meir, R. (1997). Density estimation through convex combinations of densities: approximation and estimation bounds. Neural computation, 10(1), 99–109. doi: 10.1016/S0893-6080(96)00037-8