6,434
Views
4
CrossRef citations to date
0
Altmetric
EVERYTHING YOU NEED TO KNOW IN 2020 ABOUT:

Impact of Amblyopia on the Central Nervous System

, , , MD & , PhDORCID Icon
Pages 182-192 | Received 21 Jul 2020, Accepted 20 Oct 2020, Published online: 18 Nov 2020

References

  • DeSantis D. Amblyopia. Pediatr Clin North Am. 2014;61(3):505–518. doi:10.1016/j.pcl.2014.03.006.
  • Quinlan EM, Lukasiewicz PD. Amblyopia: challenges and opportunities the lasker/IRRF initiative for innovation in vision science. Vis Neurosci. 2018;35. doi:10.1017/S0952523817000384.
  • Hashemi H, Pakzad R, Yekta A, et al. Global and regional estimates of prevalence of amblyopia: A systematic review and meta-analysis. Strabismus. 2018;26:168–183. doi:10.1080/09273972.2018.1500618.
  • Amblyopia (Lazy Eye). In: national eye institute [Internet]. https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/amblyopia-lazy-eye. Published July 2, 2019. Accessed September 27, 2020.
  • Holmes JM, Clarke MP. Amblyopia. Lancet. 2006;367:1343–1351. doi:10.1016/S0140-6736(06)68581-4.
  • Levi DM, Klein S. Hyperacuity and amblyopia. Nature. 1982;298:268–270. doi:10.1038/298268a0.
  • Hess RF, Howell ER. The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification. Vision Res. 1977;17:1049–1055.
  • Levi DM, Harwerth RS. Contrast evoked potentials in strabismic and anisometropic amblyopia. Invest Ophthalmol Vis Sci. 1978;17:571–575.
  • Howell ER, Mitchell DE, Keith CG. Contrast thresholds for sine gratings of children with amblyopia. Invest Ophthalmol Vis Sci. 1983;24:782–787.
  • Hess RF, McIlhagga W, Field DJ. Contour integration in strabismic amblyopia: the sufficiency of an explanation based on positional uncertainty. Vision Res. 1997;37:3145–3161. doi:10.1016/S0042-6989(96)00281-7.
  • Hess RF, Demanins R. Contour integration in anisometropic amblyopia. Vision Res. 1998;38:889–894. doi:10.1016/S0042-6989(97)00233-2.
  • Levi DM, Li RW, Klein SA. “Phase capture” in amblyopia: the influence function for sampled shape. Vision Res. 2005;45:1793–1805. doi:10.1016/j.visres.2005.01.021.
  • Mirabella G, Hay S, Wong AMF. Deficits in perception of images of real-world scenes in patients with a history of amblyopia. Arch Ophthal. 2011;129:176. doi:10.1001/archophthalmol.2010.354.
  • Simmers AJ, Ledgeway T, Hess RF, McGraw PV. Deficits to global motion processing in human amblyopia. Vision Res. 2003;43:729–738. doi:10.1016/S0042-6989(02)00684-3.
  • Simmers AJ, Ledgeway T, Hess RF. The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Res. 2005;45:449–460. doi:10.1016/j.visres.2004.08.026.
  • Li J, Thompson B, Lam CSY, et al. The role of suppression in amblyopia. Invest Ophthalmol Vis Sci. 2011;52:4169–4176. doi:10.1167/iovs.11-7233.
  • Niechwiej-Szwedo E, Colpa L, Wong AMF. Visuomotor behaviour in amblyopia: deficits and compensatory adaptations. Neural Plast. 2019;2019:6817839. doi:10.1155/2019/6817839.
  • Kanonidou E, Proudlock FA, Gottlob I. Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation. Invest Ophthalmol Vis Sci. 2010;51:3502–3508. doi:10.1167/iovs.09-4236.
  • Kelly KR, Jost RM, De La Cruz A, Birch EE. Amblyopic children read more slowly than controls under natural, binocular reading conditions. J Aapos. 2015;19:515–520. doi:10.1016/j.jaapos.2015.09.002.
  • Meier K, Giaschi D. Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Invest Ophthalmol Vis Sci. 2017;58:1779–1800. doi:10.1167/iovs.16-20964.
  • Farivar R, Thompson B, Mansouri B, Hess RF. Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex. J Vis. 2011;11:16. doi:10.1167/11.14.16.
  • Webber AL. The functional impact of amblyopia. Clin Exp Optom. 2018;101:443–450. doi:10.1111/cxo.12663.
  • Simons K. Amblyopia characterization, treatment, and prophylaxis. Surv Ophthalmol. 2005;50:123–166. doi:10.1016/j.survophthal.2004.12.005.
  • Jefferis JM, Connor AJ, Clarke MP. Amblyopia. BMJ. 2015;351:h5811. doi:10.1136/bmj.h5811.
  • Stanković B. Clinical aspects of different types of amblyopia. Vojnosanit Pregl. 2011;68:696–698. doi:10.2298/VSP1108696S.
  • McKee SP, Levi DM, Movshon JA. The pattern of visual deficits in amblyopia. J Vis. 2003;3:380–405. doi:10.1167/3.5.5.
  • Kelly KR, Cheng-Patel CS, Jost RM, Wang Y-Z, Birch EE. Fixation instability during binocular viewing in anisometropic and strabismic children. Exp Eye Res. 2019;183:29–37. doi:10.1016/j.exer.2018.07.013.
  • Levi DM, Knill DC, Bavelier D. Stereopsis and amblyopia: A mini-review. Vision Res. 2015;114:17–30. doi:10.1016/j.visres.2015.01.002.
  • Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206:419–436. doi:10.1113/jphysiol.1970.sp009022.
  • LeVay S, Wiesel TN, Hubel DH. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 1980;191:1–51. doi:10.1002/cne.901910102.
  • Yinon U, Auerbach E. The ocular dominance of cortical neurons in cats developed with divergent and convergent squint. Vision Res. 1975;15:1251–1256. doi:10.1016/0042-6989(75)90170-4.
  • Eggers HM, Blakemore C. Physiological basis of anisometropic amblyopia. Science. 1978;201:264–267. doi:10.1126/science.663654.
  • Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci. 1998;18:6411–6424. doi:10.1523/JNEUROSCI.18-16-06411.1998.
  • Yinon U. Age dependence of the effect of squint on cells in kittens’ visual cortex. Exp Brain Res. 1976;26:151–157. doi:10.1007/BF00238279.
  • Dumoulin SO, Knapen T. How visual cortical organization is altered by ophthalmologic and neurologic disorders. Annu Rev Vis Sci. 2018;4:357–379. doi:10.1146/annurev-vision-091517-033948.
  • Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–329. doi:10.1016/j.nurt.2007.05.011.
  • Rokem A, Takemura H, Bock AS, et al. The visual white matter: the application of diffusion MRI and fiber tractography to vision science. J Vis. 2017;17:4. doi:10.1167/17.2.4.
  • Yen M-Y, Cheng C-Y, Wang A-G. Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci. 2004;45:2224–2230. doi:10.1167/iovs.03-0297.
  • Yoon SW, Park WH, Baek S-H, Kong SM. Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J Ophthalmol. 2005;19:62–67. doi:10.3341/kjo.2005.19.1.62.
  • Dickmann A, Petroni S, Salerni A, Dell’Omo R, Balestrazzi E. Unilateral amblyopia: an optical coherence tomography study. J Aapos. 2009;13:148–150. doi:10.1016/j.jaapos.2008.10.009.
  • Huynh SC, Samarawickrama C, Wang XY, et al. Macular and nerve fiber layer thickness in amblyopia: the Sydney childhood eye study. Ophthalmology. 2009;116:1604–1609. doi:10.1016/j.ophtha.2009.03.013.
  • Araki S, Miki A, Yamashita T, et al. A comparison between amblyopic and fellow eyes in unilateral amblyopia using spectral-domain optical coherence tomography. Clin Ophthalmol. 2014;8:2199–2207. doi:10.2147/OPTH.S69501.
  • Kusbeci T, Karti O, Karahan E, Oguztoreli M. The evaluation of anatomic and functional changes in unilateral moderate amblyopic eyes using optical coherence tomography and pupil cycle time. Curr Eye Res. 2017;42:1725–1732. doi:10.1080/02713683.2017.1349153.
  • Singh N, Rohatgi J, Gupta VP, Kumar V. Measurement of peripapillary retinal nerve fiber layer thickness and macular thickness in anisometropia using spectral domain optical coherence tomography: a prospective study. Clin Ophthalmol. 2017;11:429–434. doi:10.2147/OPTH.S123273.
  • Kantarci FA, Tatar MG, Uslu H, et al. Choroidal and peripapillary retinal nerve fiber layer thickness in adults with anisometropic amblyopia. Eur J Ophthalmol. 2015;25:437–442. doi:10.5301/ejo.5000594.
  • Kee S-Y, Lee S-Y, Lee Y-C. Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol. 2006;20:177–181. doi:10.3341/kjo.2006.20.3.177.
  • Repka MX, Goldenberg-Cohen N, Edwards AR. Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol. 2006;142:247–251. doi:10.1016/j.ajo.2006.02.030.
  • Li J, Ji P, Yu M. Meta-analysis of retinal changes in unilateral amblyopia using optical coherence tomography. Eur J Ophthalmol. 2015;25:400–409. doi:10.5301/ejo.5000583.
  • Gaier ED, Gise R, Heidary G. Imaging amblyopia: insights from Optical Coherence Tomography (OCT). Semin Ophthalmol. 2019;34:303–311. doi:10.1080/08820538.2019.1620810.
  • Yakar K, Kan E, Alan A, Alp MH, Ceylan T. Retinal nerve fibre layer and macular thicknesses in adults with hyperopic anisometropic amblyopia. J Ophthalmol. 2015;2015:946467. doi:10.1155/2015/946467.
  • Miki A, Shirakashi M, Yaoeda K, et al. Optic disc measurements using the Heidelberg Retina Tomograph in amblyopia. Clin Ophthalmol. 2010;4:1025–1028. doi:10.2147/OPTH.S13143.
  • Sokol S, Nadler D. Simultaneous electroretinograms and visually evoked potentials from adult amblyopes in response to a pattern stimulus. Invest Ophthalmol Vis Sci. 1979;18:848–855.
  • Arden GB, Hogg CR, Powell DJ, Carter RM. Pattern ERGs are abnormal in many amblyopes. Trans Ophthalmol Soc UK. 1980;100:453–460.
  • Persson HE, Wanger P. Pattern-reversal electroretinograms in squint amblyopia, artificial anisometropia and simulated eccentric fixation. Acta Ophthalmol. 1982;60:123–132. doi:10.1111/j.1755-3768.1982.tb05788.x.
  • Arden GB, Wooding SL. Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci. 1985;26:88–96.
  • Hess RF, Baker CL Jr, Verhoeve JN, Keesey UT, France TD. The pattern evoked electroretinogram: its variability in normals and its relationship to amblyopia. Invest Ophthalmol Vis Sci. 1985;26:1610–1623.
  • Lempert P. Optic nerve hypoplasia and small eyes in presumed amblyopia. J Aapos. 2000;4:258–266. doi:10.1067/mpa.2000.106963.
  • Lempert P. Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology. 2008;115:2259–2261. doi:10.1016/j.ophtha.2008.07.016.
  • González EG, Wong AMF, Niechwiej-Szwedo E, Tarita-Nistor L, Steinbach MJ. Eye position stability in amblyopia and in normal binocular vision. Invest Ophthalmol Vis Sci. 2012;53:5386–5394. doi:10.1167/iovs.12-9941.
  • Subramanian V, Jost RM, Birch EE. A quantitative study of fixation stability in amblyopia. Invest Ophthalmol Vis Sci. 2013;54:1998–2003. doi:10.1167/iovs.12-11054.
  • Ukai K, Ishhii M, Ishikawa S. A quasi-static study of accommodation in amblyopia. Ophthalmic Physiol Opt. 1986;6:287–295.
  • Allen B, Schmitt MA, Kushner BJ, Rokers B. Retinothalamic white matter abnormalities in amblyopia. Invest Ophthalmol Vis Sci. 2018;59:921–929.
  • Gümüstas S, Altintas Ö, Anik Y, et al. Anterior visual pathways in amblyopia: quantitative assessment with diffusion tensor imaging. J Pediatr Ophthalmol Strabismus. 2013;50:369–374. doi:10.3928/01913913-20131125-04.
  • Guillery RW. Binocular competition in the control of geniculate cell growth. J Comp Neurol. 1972;144:117–129. doi:10.1002/cne.901440106.
  • Einon G, Ikeda H, Tremain KE. Perikaryal size of cells in the lateral geniculate nucleus and amblyopia in cats reared with convergent squint [proceedings]. J Physiol. 1978;278:50P.
  • Tremain KE, Ikeda H. Relationship between amblyopia, LGN cell “shrinkage”and cortical ocular dominance in cats. Exp Brain Res. 1982;45:243–252.
  • von Noorden GK, Crawford ML. The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci. 1992;33:2729–2732.
  • Von Noorden GK, Crawford ML, Levacy RA. The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci. 1983;24:788–790.
  • Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci. 2010;51:1432–1438. doi:10.1167/iovs.09-3931.
  • Sherman SM, Wilson JR, Guillery RW. Evidence that binocular competition affects the postnatal development of Y-cells in the cat’s lateral geniculate nucleus. Brain Res. 1975;100:441–444. doi:10.1016/0006-8993(75)90498-9.
  • Ikeda H, Tremain KE, Einon G. Loss of spatial resolution of lateral geniculate nucleus neurones in kittens raised with convergent squint produced at different stages in development. Exp Brain Res. 1978;31:207–220. doi:10.1007/BF00237600.
  • Chino YM, Cheng H, Smith III EL, Garraghty PE, Roe AW, Sur M. Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1994;91:6938–6942. doi:10.1073/pnas.91.15.6938.
  • Yin ZQ, Crewther SG, Pirie B, Crewther DP. Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of the strabismic amblyopic cat. Aust N Z J Ophthalmol. 1997;25:107–109. doi:10.1111/j.1442-9071.1997.tb01773.x.
  • Levitt JB, Schumer RA, Sherman SM, Spear PD, Movshon JA. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol. 2001;85:2111–2129. doi:10.1152/jn.2001.85.5.2111.
  • Derrington AM, Hawken MJ. Spatial and temporal properties of cat geniculate neurones after prolonged deprivation. J Physiol. 1981;314:107–120. doi:10.1113/jphysiol.1981.sp013694.
  • Blakemore C, Vital-Durand F. Organization and post-natal development of the monkey’s lateral geniculate nucleus. J Physiol. 1986;380:453–491. doi:10.1113/jphysiol.1986.sp016297.
  • Sasaki Y, Cheng H, Smith III EL, Chino Y. Effects of early discordant binocular vision on the postnatal development of parvocellular neurons in the monkey lateral geniculate nucleus. Exp Brain Res. 1998;118:341–351. doi:10.1007/s002210050288.
  • Hess RF, Thompson B, Gole G, Mullen KT. Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci. 2009;29:1064–1070. doi:10.1111/j.1460-9568.2009.06650.x.
  • Miki A, Liu GT, Goldsmith ZG, Liu C-SJ, Haselgrove JC. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica. 2003;217:365–369. doi:10.1159/000071353.
  • Allen B, Spiegel DP, Thompson B, Pestilli F, Rokers B. Altered white matter in early visual pathways of humans with amblyopia. Vision Res. 2015;114:48–55. doi:10.1016/j.visres.2014.12.021.
  • Qi S, Mu Y-F, Cui L-B, et al. Association of optic radiation integrity with cortical thickness in children with anisometropic amblyopia. Neurosci Bull. 2016;32:51–60. doi:10.1007/s12264-015-0005-6.
  • Li Q, Jiang Q, Guo M, Li Q, Cai C, Yin X. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study. Br J Ophthalmol. 2013;97:524–529. doi:10.1136/bjophthalmol-2012-302218.
  • Duan Y, Norcia AM, Yeatman JD, Mezer A. The structural properties of major white matter tracts in strabismic amblyopia. Invest Ophthalmol Vis Sci. 2015;56:5152–5160. doi:10.1167/iovs.15-17097.
  • Li Q, Zhai L, Jiang Q, et al. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia. Neurosci Lett. 2015;597:7–12. doi:10.1016/j.neulet.2015.04.027.
  • Mendola JD, Conner IP, Roy A, et al. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp. 2005;25:222–236. doi:10.1002/hbm.20109.
  • Arden GB, Barnard WM, Mushin AS. Visually evoked responses in amblyopia. Br J Ophthalmol. 1974;58:183–192. doi:10.1136/bjo.58.3.183.
  • Sokol S. Abnormal evoked potential latencies in amblyopia. Br J Ophthalmol. 1983;67:310–314. doi:10.1136/bjo.67.5.310.
  • Levi DM, Walters JW. Visual evoked responses in strabismic and anisometropic amblyopia: effects of check size and retinal locus. Am J Optom Physiol Opt. 1977;54:691–698.
  • Barnes GR, Hess RF, Dumoulin SO, Achtman RL, Pike GB. The cortical deficit in humans with strabismic amblyopia. J Physiol. 2001;533:281–297. doi:10.1111/j.1469-7793.2001.0281b.x.
  • Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R. Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res. 2006;46:506–526. doi:10.1016/j.visres.2005.10.014.
  • Li X, Dumoulin SO, Mansouri B, Hess RF. Cortical deficits in human amblyopia: their regional distribution and their relationship to the contrast detection deficit. Invest Ophthalmol Vis Sci. 2007;48:1575–1591. doi:10.1167/iovs.06-1021.
  • Goodyear BG, Nicolle DA, Humphrey GK, Menon RS. BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol. 2000;84:1907–1913. doi:10.1152/jn.2000.84.4.1907.
  • Clavagnier S, Dumoulin SO, Hess RF. Is the cortical deficit in amblyopia due to reduced cortical magnification, loss of neural resolution, or neural disorganization? J Neurosci. 2015;35:14740–14755. doi:10.1523/JNEUROSCI.1101-15.2015.
  • Tusa RJ, Ungerleider LG. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol. 1985;18:583–591. doi:10.1002/ana.410180512.
  • Jitsuishi T, Hirono S, Yamamoto T, Kitajo K, Iwadate Y, Yamaguchi A. White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex. Sci Rep. 2020;10:820. doi:10.1038/s41598-020-57837-7.
  • Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A. 2014;111:E5214–23. doi:10.1073/pnas.1418503111.
  • Wang X, Pathak S, Stefaneanu L, Yeh F-C, Li S, Fernandez-Miranda JC. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct. 2016;221:2075–2092. doi:10.1007/s00429-015-1028-5.
  • Martino J, De Witt Hamer PC, Berger MS, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 2013;218:105–121. doi:10.1007/s00429-012-0386-5.
  • Dwyer JA, Newton TH, Hoyt WF. Radiologic features of septooptic dysplasia: de Morsier syndrome. AJNR Am J Neuroradiol. 1980;1:443–447.
  • Thompson B, Villeneuve MY, Casanova C, Hess RF. Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI. Neuroimage. 2012;60:1307–1315. doi:10.1016/j.neuroimage.2012.01.078.
  • Chen AM, Cotter SA. The amblyopia treatment studies: implications for clinical practice. Adv Ophthalmol Optom. 2016;1:287–305. doi:10.1016/j.yaoo.2016.03.007.
  • Holmes JM, Lazar EL, Melia BM, et al. Effect of age on response to amblyopia treatment in children. Arch Ophthalmol. 2011;129:1451–1457. doi:10.1001/archophthalmol.2011.179.
  • Yang C-I, Yang M-L, Huang J-C, et al. Functional MRI of amblyopia before and after levodopa. Neurosci Lett. 2003;339:49–52. doi:10.1016/S0304-3940(02)01465-9.
  • Rogers GL. Functional magnetic resonance imaging (fMRI) and effects of L-dopa on visual function in normal and amblyopic subjects. Trans Am Ophthalmol Soc. 2003;101:401–415.
  • Algaze A, Leguire LE, Roberts C, Ibinson JW, Lewis JR, Rogers G. The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot study. J Aapos. 2005;9:216–223. doi:10.1016/j.jaapos.2005.01.014.
  • Yeh KC, August TF, Bush DF, et al. Pharmacokinetics and bioavailability of Sinemet CR: a summary of human studies. Neurology. 1989;39:25–38.
  • Leguire LE, Rogers GL, Bremer DL, Walson P, Hadjiconstantinou-Neff M. Levodopa and childhood amblyopia. J Pediatr Ophthalmol Strabismus. 1992;29:290–298. discussion 299.
  • Pandey PK, Chaudhuri Z, Kumar M, Satyabala K, Sharma P. Effect of levodopa and carbidopa in human amblyopia. J Pediatr Ophthalmol Strabismus. 2002;39:81–89.
  • He H-Y, Ray B, Dennis K, Quinlan EM. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat Neurosci. 2007;10:1134–1136. doi:10.1038/nn1965.
  • Duffy KR, Mitchell DE. Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Curr Biol. 2013;23:382–386. doi:10.1016/j.cub.2013.01.017.
  • Fong M-F, Mitchell DE, Duffy KR, Bear MF. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proc Natl Acad Sci U S A. 2016;113:14139–14144. doi:10.1073/pnas.1613279113.
  • Wiedeman R. For better vision, living in the dark. The New Yorker. https://www.newyorker.com/magazine/2016/12/19/for-better-vision-living-in-the-dark. Published December 11, 2016. Accessed July 15 2020.
  • Miller NP, Gandhi T, Sinha P, Rokers B. White-Matter plasticity following sight-restoration in congenitally blind patients. J Vis. 2019;19:277d. doi:10.1167/19.10.277d.
  • Schwartz S, Maquet P, Frith C. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci U S A. 2002;99:17137–17142.
  • Zhai J, Chen M, Liu L, et al. Perceptual learning treatment in patients with anisometropic amblyopia: a neuroimaging study. Br J Ophthalmol. 2013;97:1420–1424. doi:10.1136/bjophthalmol-2013-303778.