1,163
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Multi-solitary wave solutions to the general time fractional Sharma–Tasso–Olver equation and the time fractional Cahn–Allen equation

, , ORCID Icon &
Pages 193-201 | Received 30 Oct 2018, Accepted 09 Mar 2019, Published online: 12 Apr 2019

References

  • Abdel-Salam, E. A. B., & Hassan, G. F. (2016). Multi-wave solutions of the space time fractional Burger and Sharma-Tasso-Olever equations. Ain Shams Engineering Journal, 7(1), 463–472. doi: 10.1016/j.asej.2015.04.001
  • Akbar, M. A., & Ali, N. H. M. (2012). New solitary and periodic solutions of nonlinear evolution equation by exp- function method. World Applied Sciences Journal, 17(12), 1603–1610.
  • Akbar, M. A., Ali, N. H. M., & Wazwaz, A. M. (2018). Closed form traveling wave solutions of non-linear fractional evolution equations through the modified simple equation method. Thermal Science, 22(1), 341–352. doi: 10.2298/TSCI170613097A
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012a). A generalized and improved (G′/G)-expansion method for nonlinear evolution equation. Mathematical Problems in Engineering, 2012, 1–22. doi: 10.1155/2012/459879
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012b). Abundant exact traveling wave solutions of the generalized Bretherton equation via the improved (G′/G)-expansion method. Communications in Theoretical Physics, 57(2), 173–178. doi: 10.1088/0253-6102/57/2/01
  • Akgul, A., Baleanu, D., & Inc, M. (2016). On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Physics, 14, 685–689.
  • Alhakim, L. A., & Moussa, A. A. (2017). The improve exp(-ϕ(ξ))-expansion method and its application to non-linear fractional Sharma-Tasso-Olver equation. Journal of Applied & Computational Mathematics, 6(3), 1–5.
  • Arafa, A. A. M., Rida, S. Z., & Mohamed, H. (2011). Homotopy analysis method for solving biological population model. Communications in Theoretical Physics, 56(5), 797–800. doi: 10.1088/0253-6102/56/5/01
  • Ayhan, B., & Bekir, A. (2012). The (G′/G)-expansion method for the nonlinear lattice equations. Communications in Nonlinear Science and Numerical Simulation, 17(9), 3490–3498. doi: 10.1016/j.cnsns.2012.01.009
  • Batool, F., & Ghazala, A. (2018). New solitary wave solutions of the time fractional Cahn-Allen equation via the improved (G′/G)-expansion method. The European Physical Journal Plus, 133(171), 1–11.
  • Bekir, A., Aksoy, E., & Cevikel, A. C. (2016). Exact solutions of nonlinear time fractional differential equations by sub-equation method. Mathematical Methods in the Applied Science, 38(13), 2779–2784. doi: 10.1002/mma.3260
  • Bekir, A., Guner, O., & Cevikel, A. C. (2013). Fractional complex transform and exp-function methods for fractional differential equations. Abstract and Applied Analysis, 2013, 426–462. doi: 10.1155/2013/426462
  • Bekir, A., Guner, O., & Unsal, O. (2015). The first integral method for exact solutions of nonlinear fractional differential equation. Journal of Computational and Nonlinear Dynamics, 10(2), 021020.
  • El-Sayed, A. M. A., Behiry, S. H., & Raslan, W. E. (2010). Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation. Computers and Mathematics with Applications, 59(5), 1759–1765. doi: 10.1016/j.camwa.2009.08.065
  • Erturk, V. S., Momani, S., & Odibat, Z. (2008). Application of generalized transformation method to multi-order fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 13(8), 1642–1654.
  • Esen, A., Yagmurlu, N. M., & Tasbozan, O. (2013). Approximate analytical solution to the time fractional damped Burger and Cahn-Allen equations. Applied Mathematics & Information Sciences, 7(5), 1951–1956. doi: 10.12785/amis/070533
  • Gepreel, K. A. (2011). The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations. Applied Mathematics Letters, 24(8), 1428–1434.
  • Gepreel, K. A., & Omran, S. (2012). Exact solutions for nonlinear partial fractional differential equations. Chinese Physics B, 21(11), 110204. doi: 10.1088/1674-1056/21/11/110204
  • Gómez-Aguilar, J. F., Martinez, H. Y., & Torres-Jimenez, J. (2017). Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel. Advances in Difference Equations, 2017(1), 68.
  • Guo, S. M., & Mei, L. Q. (2011). The fractional variational iteration method using He’s polynomial. Physics Letters A, 375(3), 309–313. doi: 10.1016/j.physleta.2010.11.047
  • Guo, S. M., Mei, L. Q., Li, Y., & Sun, Y. F. (2012). The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Physics Letters A, 376(4), 407–411. doi: 10.1016/j.physleta.2011.10.056
  • He, J. H. (2014). A tutorial review on fractal space-time and fractional calculus. International Journal of Theoretical Physics, 53(11), 3698–3718. doi: 10.1007/s10773-014-2123-8
  • Islam, M. N., & Akbar, M. A. (2018). New exact wave solutions to the space-time fractional coupled Burgers equations and the space-time fractional foam drainage equation. Cogent Physics, 5, 1422957.
  • Ji, J., Zhang, J. B., & Dong, Y. J. (2012). The fractional variational iteration method improved with the Adomian series. Applied Mathematics Letters, 25(12), 2223–2226. doi: 10.1016/j.aml.2012.06.007
  • Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367–1376. doi: 10.1016/j.camwa.2006.02.001
  • Li, L. X., Li, E. Q., & Wang, M. L. (2010). The (G′/G,1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Applied Mathematics A Journal of Chinese Universities, 25(4), 454–462.
  • Liu, F. J., Liu, H. Y., Li, Z. B., & He, J. H. (2017). A delayed fractional model for cocoon heat-proof property. Thermal Science, 21(4), 1867–1871. doi: 10.2298/TSCI160415101L
  • Lu, B. (2012). Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Physics Letters A, 376(28-29), 2045–2048. doi: 10.1016/j.physleta.2012.05.013
  • Martinez, H. Y., Gómez-Aguilar, J. F., & Atangana, A. (2018). First integral method for nonlinear differential equations with conformable derivative. Mathematical Modelling of Natural Phenomena, 13, 14–22. doi: 10.1051/mmnp/2018012
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.
  • Podlubny, I. (1999). Fractional differential equations. San Diego, CA: Academic.
  • Rawashdeh, M. (2015). An efficient approach for time fractional damped Burger and time fractional Sharma-Tasso-Olever equations using the FRDTM. Applied Mathematics and Information Sciences, 9(3), 1239–1246.
  • Rawashdeh, M. (2017). A reliable method for the space time fractional Burger and time fractional Cahn-Allen equations via the FRDTM. Advances in Difference Equations, 2017(1), 99. doi: 10.1186/s13662-0171148-8
  • Roy, R., Akbar, M. A., & Wazwaz, A. M. (2018). Exact wave solutions for the non-linear time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation by mathematical physics. Optical and Quantum Electronics, 50(1), 219–251.
  • Seadawy, A. R. (2017a). The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions. Optik–International Journal for Light and Electron Optics, 139, 31–43. doi: 10.1016/j.ijleo.2017.03.086
  • Seadawy, A. R. (2017b). Travelling wave solutions of a weakly nonlinear two-dimensional higher order Kadomtsev-Petviashvili dynamical equation for dispersive shallow water waves. The European Physical Journal Plus, 132(1), 29–38.
  • Song, L. N., Wang, Q., & Zhang, H. (2009). Rational approximation solutions of the fractional Sharma-Tasso-Olever equation. Journal of Computational and Applied Mathematics, 224(1), 210–218. doi: 10.1016/j.cam.2008.04.033
  • Uddin, M. H., Akbar, M. A., Khan, M. A., & Haque, M. A. (2017). Close form solutions of the fractional generalized reaction Duffing model and the density dependent fractional diffusion reaction equation. Applied and Computational Mathematics, 6(4), 177–184.
  • Wang, M. L., Li, X. Z., & Zhang, J. L. (2008). The (G′/G)-expansion method and the traveling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372(4), 417–423. doi: 10.1016/j.physleta.2007.07.051
  • Wang, K. L., & Wang, K. J. (2018). A modification of the reduced differential transform method for fractional calculus. Thermal Science, 22(4), 1871–1875. doi: 10.2298/TSCI1804871W
  • Wang, Y., Zhang, Y.-F., & Liu, Z.-J. (2018). An application of local fractional variational iteration method and its application to local fractional modified Korteweg-de Vries equation. Thermal Science, 22(1 Part A), 23–27. doi: 10.2298/TSCI160501143W
  • Wu, G. C. (2011). A fractional variational iteration method for solving fractional nonlinear differential equations. Computers and Mathematics with Applications, 61(8), 2186–2190. doi: 10.1016/j.camwa.2010.09.010
  • Zayed, E. M. E., & Abdelaziz, M. A. M. (2012). The two variable (G′/G,1/G)-expansion method for solving the nonlinear KdV-mkdV equation. Mathematical Problems in Engineering, 2012, 1–14. doi: 10.1155/2012/725061
  • Zhang, B. (2012). (G′/G)-expansion method for solving fractional partial differential equation in the theory of mathematical physics. Communications in Theoretical Physics, 58, 623–630.
  • Zhang, S., & Zhang, H. Q. (2011). Fractional sub-equation method and its application to the nonlinear fractional PDEs. Physics Letters A, 375(7), 1069–1073. doi: 10.1016/j.physleta.2011.01.029