826
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Electrospun porous bio-fibre mat based on polylactide/natural fibre particles

, ORCID Icon, , , & ORCID Icon
Pages 225-235 | Received 29 Aug 2018, Accepted 30 Mar 2019, Published online: 11 May 2019

References

  • Adeosun, S. O., Akpan, E. I., Gbenebor, O. P., Peter, A. A., & Olaleye, S. A. (2016a). Filler surface nature, bead, solution concentration and fibre diameter of electrospun particle-reinforced polylactide. In TMS 2016: 145th Annual Meeting & Exhibition: Supplemental proceedings (pp. 101–108). New York: John Wiley & Sons, Inc.
  • Adeosun, S. O., Akpan, E. I., Gbenebor, O. P., Peter, A. A., & Olaleye, S. A. (2016b). Mechanical behavior of electrospun palmfruit bunch reinforced polylactide composite fibers. JOM: The Journal of the Minerals, Metals & Materials Society, 68(1), 265–270.
  • Adeosun, S., Taiwo, O., Akpan, E., Gbenebor, O., Gbagba, S., & Olaleye, S. (2016c). Mechanical characteristics of groundnut shell particle reinforced polylactide nano fibre. Matéria (Rio de Janeiro), 21(2), 482–491.
  • Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The influence of polymer solution on the properties of electrospun 3d nanostructures. IOP Conf. Series: Materials Science and Engineering, 209, 1–7.
  • Asran, A., Salama, M., Popescu, C., & Michler, G. H. (2010). Solvent influences the morphology and mechanical properties of electrospun poly(l-lactic acid) scaffold for tissue engineering applications. Macromolecular Symposia, 294(1), 153–161.
  • Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., … Wendorff, J. H. (2001). Nanostructured fibers via electrospinning. Advanced Materials, 13(1), 70–72.
  • Butcher, A. L., Ching, T. K., & Oyen, M. L. (2017). Systematic mechanical evaluation of electrospun gelatin meshes. Journal of the Mechanical Behavior of Biomedical Materials, 69, 412–419.
  • Chen, G., & Liu, H. (2008). Electrospun cellulose nanofiber reinforced soybean protein isolate composite Film. Journal of Applied Polymer Science, 110(2), 641–646.
  • Chen, H., Tsai, C., & Yang, M. (2011). Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. J Polym Res, 18(3), 319–327.
  • Chou, S., & Woodrow, K. A. (2017). Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. Journal of the Mechanical Behavior of Biomedical Materials, 65, 724–733.
  • Dotti, F., Varesano, A., Montarsolo, A., Aluigi, A., Tonin, C., & Mazzuchetti, G. (2007). Electrospun porous mats for high efficiency filtration. Journal of Industrial Textiles, 37(2), 151–162.
  • Gaitan, A., & Gacitua, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. Bioresources, 13, 3659–3673.
  • Gazquez, G. C., Smulders, V., Veldhuis, S. A., Wieringa, P., Moroni, L., Boukamp, B. A., & Elshof, J. E. (2017). Influence of solution properties and process parameters on the formation and morphology of YSZ and NiO ceramic nanofibers by electrospinning. Nanomaterials, 7, 1–15.
  • Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., & Wang, Q. (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5), 2718–2734.
  • Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Structure and properties of electrospun PLLA single nanofibres. Nanotechnology, 16(2), 208–213.
  • Ji, W., Sun, Y., Yang, F., Beucken, V., Jeroen, J. J. P., Fan, M., … Jansen, J. A. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research, 28(6), 1259–1272.
  • Kancheva, M., Toncheva, A., Manolova, N., & Rashkov, I. (2015). Enhancing the mechanical properties of electrospun polyester mats by heat treatment. Express Polymer Letters, 9(1), 49–65.
  • Kidoaki, S., Kwon, I., & Matsuda, T. (2005). Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials, 26(1), 37–46.
  • Liu, W., Li, Z., Zheng, L., Zhang, X., Liu, P., Yang, T., & Han, B. (2016). Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering. Tissue Engineering and Regenerative Medicine, 13(5), 516–526.
  • Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456–8466.
  • Miao, J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J., & Dordick, J. S. (2011). Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 32(36), 9557–9567.
  • Nam, J., Huang, Y., Agarwal, S., & Lannutti, J. (2007). Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Engineering, 13(9), 2249–2257.
  • Siimon, K., Moisavald, K., Siimon, H., & Jarvekulg, M. (2015). Increasing mechanical strength of electrospun gelatin nanofibers by the addition of aluminum potassium sulfate. Journal of Applied Polymer Science, 132, 42431.
  • Tammaro, L., Vittoria, V., Wyrwa, R., Weisser, J., Beer, B., Thein, S., & Schnabelrauch, M. (2014). Fabrication and characterization of electrospun polylactide/β-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. BioNanoMaterials, 15, 9–20.
  • Tarus, B., Fadel, N., Al-Oufy, A., & El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975–2984.
  • Teo, W., He, W., & Ramakrishna, S. (2006). Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnology Journal, 1(9), 918–929.
  • Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914–925.
  • Tsuji, H., Nakano, M., Hashimoto, M., Takashima, K., Katsura, S., & Mizuno, A. (2006). Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules, 7(12), 3316–3320.
  • Wu, J., & Hong, Y. (2016). Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 1(1), 56–64.
  • Zhu, X., Cui, W., Li, X., & Jin, Y. (2008). Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 9(7), 1795–1801.