3,520
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review

, , & ORCID Icon
Pages 311-330 | Received 03 Dec 2018, Accepted 28 May 2019, Published online: 27 Jun 2019

References

  • Abraham, S. J., Dinaharan, I., Selvam, J. D. R., & Akinlabi, E. T. (2019). Microstructural characterization of vanadium particles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Composites Communications, 12, 54–58.
  • Alaneme, K. K., Bodunrin, M. O., & Awe, A. A. (2018). Microstructure, Mechanical and Fracture Properties of Groundnut Shell Ash - Silicon Carbide hybrid reinforced with aluminium-based composites. King Saud University Journal: Engineering Science, 30(1), 96–103.
  • Alaneme, K. K., Fajemisin, A. V., & Maledi, N. B. (2018). Development of aluminium based composites reinforced with steel and graphite particles. Structural, mechanical, and wear characterization. Journal of Materials Research and Technology, 8(1), 670–682. doi:10.1016/j.jmrt.2018.04.019
  • Alaneme, K. K., Ajibuwa, O. A., Kolawole, I. E., & Fajemisin, A. V. (2017). Mechanical corrosion and wear behaviour of steel chips and graphite reinforced Zn-27al alloy based composites. Acta Metallurgica Slovaca, 23(2), 171–181.
  • Alaneme, K. K., & Okotete, E. A. (2017). Enhancing plastic deformability of Mg and its alloys: A review of traditional and nascent developments. Journal of Magnesium and Alloys, 5(4), 460–475.
  • Alaneme, K. K., Adeoye, K. O., & Oke, S. R. (2016). Mechanical and wear behaviour of steel chips reinforced Zn27Al composites. Leonardo Electronic Journal of Practices and Technologies, 29, 1–16.
  • Alaneme, K. K., & Odoni, B. U. (2016). Mechanical properties wear and corrosion behavior of copper matrix composites reinforced with steel machining chips. Engineering Science and Technology, an International Journal, 19(3), 1593–1599.
  • Alaneme, K. K., Fatile, B. O., & Borode, J. O. (2014). Mechanical and corrosion behaviour of Zn27Al based composites reinforced with bamboo leaf ash and silicon carbide. Leonardo Electronic Journal of Practices and Technologies, 25, 58–71.
  • Aljerf, M., Georgarakis, K., Louzguine-Luzgin, D., Le, Mouleca, A., Inoue, A., & Yavaria, A. R. (2012). Strong and light metal matrix composites with metallic glass particulate reinforcement. Material Science and Engineering A, 532, 325–330.
  • Anshuman, S. (2017). Recent, advances in metal matrix composites (MMCs): A review. Biomedical Journal of Science and Technological Research, 1(2), 1–3.
  • Arora, G., & Sharma, S. (2017). A review on monolithic and hybrid metal–matrix composites reinforced with industrial-agro wastes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(11), 4819–4835. doi:10.1007/s40430-017-0910-x
  • Ashby, M. F., & Greer, A. L. (2006). Metallic glasses as structural materials. Scripta Materialia, 54(3), 321–326.
  • Bahrami, A., Soltani, N., Pech-Canul, M. I., & Gutiérrez, C. A. (2015). Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Critical Reviews in Environmental Science and Technology, 46(2), 143–208. doi:10.1080/10643389.2015.1077067
  • Bains, P. S., Sidhu, S. S., & Payal, H. S. (2016). Fabrication and machining of metal matrix composites: A review. Materials and Manufacturing Processes, 31(5), 553–573.
  • Bauri, R., & Yadav, D. (2018). Introduction to metal matrix composites. Chap. 1. In Metal Matrix composites by friction stir processing (1st ed., pp. 1–16). Oxford, UK: Butterworth-Heinemann.
  • Bodunrin, M. O., Alaneme, K. K., & Chow, L. H. (2015). Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical corrosion and tribological characteristics. Journal of Materials Research and Technology, 4(4), 434–445.
  • Cardinal, S., Pelletier, J. M., Xie, G. Q., Mercier, F., & Dalmas, F. (2019). Enhanced compressive plasticity in a Cu-Zr-Al: Based metallic glass composite. Journal of Alloys and Compounds, 782, 59–68.
  • Casati, R., & Vedani, M. (2014). Metal matrix composites reinforced by nano-particles: A review. Metals, 4(1), 65–83.
  • Chawla, N., & Shen, Y. (2001). Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 3(6), 357–370.
  • Chen, J., Niu, P., Wei, T., Hao, L., Liu, Y., Wang, X., & Peng, Y. (2015). Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. Journal of Alloys and Compounds, 649, 630–634.
  • Chou, T. W., Kelly, A., & Okura, A. (1985). Fibre-reinforced metal-matrix composites. Composites, 16(3), 187–206.
  • Dudina, D. V., Georgarakis, K., Li, Y., Aljerf, M., LeMoulec, A., Yavari, A. R., & Inoue, A. (2009). A magnesium alloy matrix composite reinforced with metallic glass. Composite Science and Technology, 69(15-16), 2734–2736.
  • Emara, M. M. (2017). Enhanced tensile hardness and wear behaviors of pure aluminum matrix reinforced with steel chips via powder metallurgy technique. IOP Conference Series: Materials Science and Engineering, 3149516(72809107), 012041. doi:10.1088/1757-899X/191/1/012041
  • Fathy, A., El-Kady, O., & Mohammed, M. M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Transactions of Nonferrous Metals Society of China, 25(1), 46–53.
  • Gopi Krishna, M., Praveen Kumar, K., Naga Swapna, M., Babu Rao, J., & Bhargava, N. R. M. R. (2018). Fabrication characterization and mechanical behaviour of A356/copper particulate reinforced metallic composites. Materials. Today Proceedings, 5(2), 7685–7691.
  • Goussous, S., Xu, W., & Xia, K. (2010). Developing Aluminum nanocomposites via Severe Plastic Deformation. Journal of Physic: Conference Series, 240(1), 1–5.
  • El-Labban, F. E., Abdelaziz, M., & Mahmoud, E. R. I. (2016). Preparation and characterization of squeeze cast Al-Si piston alloy reinforced by Ni and nano Al2O3 particle. Journal of King Saud University: Engineering Science, 28, 230–239.
  • Hassan, S. F., & Gupta, M. (2003). Development of high strength magnesium–copper based hybrid composites with enhanced tensile properties. Materials Science and Technology, 19(2), 253–259.
  • Hassan, S. F., & Gupta, M. (2002a). Development of ductile magnesium composite materials using titanium as reinforcement. Journal of Alloys and Compounds, 345(1-2), 246–251.
  • Hassan, S. F., & Gupta, M. (2002b). Development of high strength magnesium based composites using elemental nickel particulates as reinforcement. Journal of Materials Science, 37(12), 2467–2474.
  • Ho, K. F., Gupta, M., & Srivatsan, T. S. (2004). The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates. Materials Science and Engineering A, 369(1-2), 302–308.
  • Huang, G., Wu, J., Hou, W., & Shen, Y. (2018). Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing. Materials Science & Engineering A, 734, 353–363.
  • Ibrahim, I. A., Mohamed, F. A., & Lavernia, E. J. (1991). Particulate reinforced metal matrix composites- a review. Journal of Materials Science, 26(5), 1137–1156.
  • Iglesias, P., Jiménez, A. E., Bermúdez, M. D., Rao, B. C., & Chandrasekar, S. (2013). Steel machining chips as reinforcements to improve sliding wear resistance of metal alloys: Study of a model Zn-based alloy system. Tribology International, 65, 215–227.
  • Kerti, I., & Toptan, F. (2008). Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Materials Letter, 62(8–9), 1215–1218.
  • Kumar, V. M., & Devi, C. N. (2014). Evaluation of mechanical characteristics for aluminum-copper metal matrix composite. Research Journal of Engineering Science, 3(3), 1–5.
  • Kumar, P., Sadashivappa, K., Prabhukumar, G. P., & Basavarajappa, S. (2006). Dry sliding wear behaviour of garnet particles reinforced zinc-aluminium alloy metal matrix composites. Materials Science (MEDŽIAGOTYRA), 12(3), 209–213.
  • Kumari, S., Kumar, A., Sengupta, P. R., Dutta, P. K., & Mathur, R. B. (2014). Improving the mechanical and thermal properties of semi-coke based carbon/copper composites reinforced using carbon nanotubes. Advanced Materials Letters, 5(5), 265–271.
  • Lancaster, L., Lung, M. H., & Sujan, D. (2013). Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability. World Academy of Science, Engineering and Technology, International Journal of Environmental and Ecological Engineering, 7(1), 35–43.
  • Lee, M. H., Kim, J. H., Park, J. S., Kim, J. C., Kim, W. T., & Kim, D. H. (2004). Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scripta Materialia, 50(11), 1367–1371.
  • Li, J., Zhao, G., Wu, S., Huang, Z., Lü, S., Chen, Q., & Li, F. (2019). Preparation of hybrid particulates SiCnp and Mg2Si reinforced Al-Cu matrix composites. Materials Science and Engineering, A, 751, 107–114.
  • Li, J., Zhang, H., Zhang, Y., Che, Z., & Wang, X. (2015). Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. Journal of Alloys and Compounds, 64, 941–946.
  • Lyod, D. J. (1994). Particle reinforced aluminium and magnesium matrix composites. International Materials Review, 39(1), 1–23.
  • Meenashisundaram, G. K., & Gupta, M. (2014). Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. Journal of Alloys and Compounds, 593, 176–183.
  • Miracle, D. B. (2005). Metal matrix composites: From science to technological significance. Composite Science and Technology, 65(15-16), 2526–2540.
  • Nair, S. V., Tien, J. K., & Bates, R. C. (1985). SiC-reinforced aluminium metal matrix composites. International Metallurgical Review, 30(1), 275–290.
  • Navasingh, R. J. H., Kumar, R., Marimuthu, K., Planichamy, S., Khan, A., Asiri, A. M., & Asad, M. (2019). Graphene-based nano metal matrix composites: A review. Chap. 6. In Nanocarbon and its composites: Preparation, properties and applications (pp. 153–170). Sawston, UK: Woodhead Publishing Series in Composites and Engineering. Retrieved from https://doi.org/10.1016/B978-0-08-102509-3.00006-7.
  • Pal, M. K., Singh, Sandhu, S., Kalia, R., & Ghosh, A. (2015). Identification of optimum composition and mechanical properties of Al-Ni metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 3, 326–334.
  • Pandi, G., & Muthusamy, S. (2012). A review of machining and tribological behaviours of aluminium hybrid composites. Procedia Engineering, 38, 1399–1408.
  • Prasad, D. S., Shoba, C., & Ramanaiah, N. (2014). Investigations on mechanical properties of aluminium hybrid composites. Journal of Materials Research and Technology, 3(1), 79–85.
  • Prasad, S. V., & Asthana, R. (2004). Aluminum metal–matrix composites for automotive applications: Tribological considerations. Tribology Letters, 17(3), 445–453.
  • Ramnath, B. V., Elanchezhian, C., Annamalai, R. M., Aravind, S., Sri, Ananda, Atreya, T., Vignesh, V., & Subramanian, C. (2014). Aluminium metal matrix composites: Review. Advanced Materials Science, 38, 55–60.
  • Rashad, M., Pan, F., Asif, M., She, J., & Ullah, A. (2015). Improved mechanical proprieties of “magnesium based composites” with titanium e aluminum hybrids. Journal of Magnesium and Alloys, 3(1), 1–9.
  • Sagar, W. V., Samir, S. L., & Amit, W. R. (2013). Modelling of Cu-Al2O3 metal matrix composite prepared by powder metallurgy route. International Journal of Engineering and Advanced Technology, 3, 30–332.
  • Saida, J., Matsushita, M., Li, C., & Inoue, A. (2000). Formation of icosahedral quasicrystalline phase in Zr70Ni10M20(M = Pd,Au,Pt)… ternary metallic glasses. Applied Physics Letters, 76(24), 3558–3560.
  • Salih, O. S., Ou, H., Wei, X., & Sun, W. (2019). Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite. Materials Science and Engineering A, 742, 78–88.
  • Salvo, C., Mangalaraja, R. V., Udayabashkar, R., Lopez, M., & Aguilar, C. (2019). Enhanced mechanical and electrical properties of novel graphene reinforced copper matrixcomposites. Journal of Alloys and Compounds, 777, 309–316. doi:10.1016/j.jallcom.2018.10.357
  • Salih, O. S., Ou, H., Sun, W., & McCartney, D. G. (2015). A review of friction stir welding of aluminium matrix composites. Materials & Design, 86, 61–71.
  • Sankaranarayanan, S., Jayalakshmi, S., & Gupta, M. (2012). Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg. Materials & Design, 37, 274–284.
  • Sankaranarayanan, S., Hemanth, Shankar, V., Jayalakshmi, S., Quy, Bau, N., & Gupta, M. (2015). Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. Journal of Alloys and Compounds, 627, 192–199.
  • Sathiskumar, R., Murugan, N., Dinaharan, I., & Vijay, S. J. (2014). Fabrication and characterization of Cu/B4c surface dispersion strengthened composite using friction stir processing. Archives of Metallurgy and Materials, 59, 83–89.
  • Scudino, S., Liu, G., Prashanth, K. G., Bartusch, B., Surreddi, K. B., Murty, B. S., & Eckert, J. (2009). Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia, 57(6), 2029–2039.
  • Selvakumar, S., Dinaharan, I., Palanivel, R., & Babu, B. G. (2017). Characterization of molybdenum particles reinforced Al6082 aluminium matrix composites with improved ductility produced using friction stir processing. Materials Characterization, 125, 13–22.
  • Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T., & Kim, G. (1998). The properties and microstructure of Al-based composites reinforced with ceramic particles. Materials Science and Engineering A, 244(1), 86–90.
  • Srivastava, K., Dixit, A. R., & Tiwari, S. (2015). A review on the intensification of metal matrix composites and its nonconventional machining. Science and Engineering of Composite Materials, 25(2), 213–228. doi:10.1515/secm-2015-0287
  • Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28(1-2), 319–334.
  • Suresha, S., & Sridhara, B. K. (2010). Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates. Composite Science and Technology, 70(11), 1652–1659.
  • Thakur, S. K., Kong, T. S., & Gupta, M. (2007). Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites. Materials Science and Engineering, 452–453, 61–69.
  • Thostenson, E. T., Ren, Z., & Chou, T. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composite Science and Technology, 61(13), 1899–1912.
  • Torralba, J. M., da Costa, C. E., & Velasco, F. (2003). P/M aluminum matrix composites: An overview. Journal of Materials Processing Technology, 133(1-2), 203–206.
  • Umeda, J., Kawakami, M., Kondoh, K., Ayman, E., & Imai, H. (2010). Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Materials Chemistry and Physics, 123(2-3), 649–657.
  • Vasanth Kumar, R., Keshavamurthy, R., Perugu, C. S., Koppad, P. G., & Alipour, M. (2018). Influence of hot rolling on microstructure and mechanical behaviour of Al6061-ZrB2 in-situ metal matrix composites. Materials Science & Engineering A, 738, 344–352.
  • Wang, Z., Tan, J., Sun, B. A., Scudino, S., Prashanth, K. G., Zhang, W. W., … Eckert, J. (2014). Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles. Material Science and Engineering A, 600, 53–58.
  • Wong, W. L. E., & Gupta, M. (2007). Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Composite Science and Technology, 67(7-8), 1541–1552.
  • Xi, Y. L., Chai, D. L., Zhang, W. X., & Zhou, J. E. (2006). Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Materialia, 54, 9–23.
  • Xi, Y. L., Chai, D. L., Zhang, W. X., & Zhou, J. E. (2005). Ti–6Al–4V particle reinforced magnesium matrix composite by powder metallurgy. Materials Letters, 59(14-15), 1831–1835.
  • Xiuqing, Z., Haowei, W., Lihua, L., Xinying, T., & Naiheng, M. (2005). The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates. Materials Letters, 59(17), 2105–2109.
  • Yadav, D., & Bauri, R. (2010). Nickel particle embedded aluminium matrix composite with high ductility. Materials Letters, 64(6), 664–667.
  • Ye, H. Z., & Liu, X. Y. (2005). Microstructure and tensile properties of Ti6Al4V/AM60B magnesium matrix composite. Journal of Alloys and Compounds, 402(1-2), 162–169.
  • Ye, H. Z., & Liu, X. Y. (2004). Review of recent studies in magnesium matrix composites. Journal of Materials Science, 39(20), 6153–6171.
  • Zheng, R., Yang, H., Liu, T., Ameyama, K., & Maa, C. (2014). Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles. Materials and Design, 53, 512–518.