898
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Application of the Exp (−φ(ζ))-expansion method for solitary wave solutions

, , , ORCID Icon, &
Pages 376-384 | Received 26 Aug 2018, Accepted 29 Jun 2019, Published online: 16 Jul 2019

References

  • Abbasbandy, S. (2007). Numerical solutions of nonlinear Klein-Gordon equation by variational iteration method. International Journal for Numerical Methods in Engineering, 70(7), 876–881. doi: 10.1002/nme.1924
  • Abdou, M. A. (2007). The extended tanh-method and its applications for solving nonlinear physical models. Applied Mathematics and Computation, 190(1), 988–996. doi: 10.1016/j.amc.2007.01.070
  • Akbar, M. A., & Ali, N. H. M. (2012). New Solitary and Periodic Solutions of Nonlinear Evolution Equation by Exp-function Method. World Applied Sciences Journal, 17(12), 1603–1610.
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012). Abundant exact traveling wave solutions of the generalized Bretherton equation via (G′/G)-expansion method. Communications in Theoretical Physics, 57(2), 173–178. doi: 10.1088/0253-6102/57/2/01
  • Ali, A. T. (2011). New generalized Jacobi elliptic function rational expansion method. Journal of Computational and Applied Mathematics, 235(14), 4117–4127. doi: 10.1016/j.cam.2011.03.002
  • Dai, C. Q., Wang, Y. Y., Fan, Y., & Yu, D. G. (2018). Reconstruction of stability for Gaussian spatial solitons in quintic–septimal nonlinear materials under PT -symmetric potentials. Nonlinear Dynamics, 92(3), 1351–1358. doi: 10.1007/s11071-018-4130-4
  • Ding, D. J., Jin, D. Q., & Dai, C. Q. (2017). Analytical solutions of differential difference Sine- Gordon equation. Thermal Science, 21(4), 1701–1705. doi: 10.2298/TSCI160809056D
  • Feng, G., Yang, X. J., & Srivastava, H. M. (2017). Exact Travelling wave solutions for linear and nonlinear heat transfer equations. Thermal Science, 21(6), 2307–2311. doi: 10.2298/TSCI161013321G
  • He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals, 30, 700–708. doi: 10.1016/j.chaos.2006.03.020
  • Hirota, R. (1973). Exact envelope soliton solutions of a nonlinear wave equation. Journal of Mathematical Physics, 14(7), 805–810. doi: 10.1063/1.1666399
  • Hirota, R., & Satsuma, J. (1981). Soliton solution of a coupled KdV equation. Physics Letters A, 85(8–9), 407–408. doi: 10.1016/0375-9601(81)90423-0
  • Hu, H., & Li, Y. (2018). New interaction solutions and nonlocal symmetries for the (2 + 1)-dimensional coupled Burgers equation. Arab Journal of Basic and Applied Sciences, 25(2), 71–76. doi: 10.1080/25765299.2018.1449417
  • Inc, M., & Evans, D. J. (2004). On travelling wave solutions of some nonlinear evolution Equations. International Journal of Computer Mathematics, 81(2), 191–202. doi: 10.1080/00207160310001603307
  • Islam, M. T., Akbar, M. A., & Azad, M. A. K. (2017). Multiple closed form wave solutions to the KdV and modified KdV equations through the rational (G′/G)-expansion method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 160–168. doi: 10.1016/j.jaubas.2017.06.004
  • Khan, K., & Akbar, M. A. (2013). Application of   exp ⁡(−φξ)-expansion Method to find the Exact Solutions of Modified Benjamin-Bona-Mahony Equation. World Applied Sciences Journal, 24(10), 1373–1377.
  • Kaplan, M., & Akbulut, A. (2018). Application of two different algorithms to the approximate long water wave equation with conformable fractional derivative. Arab Journal of Basic and Applied Sciences, 25(2), 77–84. doi: 10.1080/25765299.2018.1449348
  • Liping, W., Senfa, C., & Chunping, P. (2009). Travelling wave solution for Generalized Drinfeld-Sokolov equations. Applied Mathematical Modelling, 33, 4126–4130.
  • Saad, K. M., Al-Shareef, E. H., Mohamed, M. S., & Yang, X. J. (2017). Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. The European Physical Journal Plus, 132(1), 11303–11306. doi: 10.1140/epjp/i2017-11303-6
  • Shehata, A. R. (2010). The travelling wave solutions of the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg Landau equation using the modified (G′/G)-expansion method. Applied Mathematics and Computation, 217(1), 1–10. doi: 10.1016/j.amc.2010.03.047
  • Sirendaoreji. (2004). New exact travelling wave solutions for the Kawahara and modified Kawahara equations. Chaos, Solitons & Fractals, 19, 147–150.
  • Wang, M. (1995). Solitary wave solutions for variant Boussinesq equations. Physics Letters A, 199(3–4), 169–172. doi: 10.1016/0375-9601(95)00092-H
  • Wang, M., Li, X., & Zhang, J. (2008). The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372(4), 417–423. doi: 10.1016/j.physleta.2007.07.051
  • Wang, Y. Y., Chen, L., Dai, C. Q., Zheng, J., & Fan, Y. (2017). Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity. Nonlinear Dynamics, 90(2), 1269–1275. doi: 10.1007/s11071-017-3725-5
  • Wang, Y. Y., Dai, C. Q., Xu, Y., Q., Zheng, J., & Fan, Y. (2018). Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation. Nonlinear Dynamics, 92(3), 1261–1269. doi: 10.1007/s11071-018-4123-3
  • Wang, Y. Y., Zhang, Y. P., & Dai, C. Q. (2016). Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dynamics, 83(3), 1331–1339. doi: 10.1007/s11071-015-2406-5
  • Wazwaz, A. M. (2004). A sine-cosine method for handing nonlinear wave equations. Mathematical and Computer Modeling, 40(5-6), 499–508. doi: 10.1016/j.mcm.2003.12.010
  • Weiss, J., Tabor, M., & Carnevale, G. (1983). The Painleve property for partial differential equations. Journal of Mathematical Physics, 24(3), 522–526. doi: 10.1063/1.525721
  • Yang, X. J. (2016). A New integral transform method for solving steady Heat transfer problem. Thermal Science, 20(suppl. 3), 639–S642. doi: 10.2298/TSCI16S3639Y
  • Yang, X. J., & Feng, G. (2017). A New Technology for Solving Diffusion and Heat Equations. Thermal Science, 21(1 Part A), 133–140. doi: 10.2298/TSCI160411246Y
  • Yang, X. J., Feng, G., & Srivastava, H. M. (2017). Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Computers & Mathematics with Applications, 73(2), 203–210. doi: 10.1016/j.camwa.2016.11.012
  • Yang, X. J., Tenreiro Machado, J. A., Baleanu, D., & Cattani, C. (2016). On exact traveling wave solutions for local fractional Korteweg-de Vries equation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(8), 084312. doi: 10.1063/1.4960543
  • Zayed, E. M. E. (2010). Traveling wave solutions for higher dimensional nonlinear evolution equations using the (G′/G)-expansion method. Journal of Applied Mathematics & Informatics, 28, 383–395.
  • Zayed, E. M. E., & Gepreel, K. A. (2009). The (G′/G)-expansion method for finding the traveling wave solutions of nonlinear partial differential equations in mathematical physics. Journal of Mathematical Physics, 50, (1), 013502–013514. doi: 10.1063/1.3033750
  • Zayed, E. M. E., & Al-Nowehy, A. G. (2017). The solitary wave ansatz method for finding the exact bright and dark soliton solutions of two nonlinear Schrödinger equations. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 184–190. doi: 10.1016/j.jaubas.2016.09.003
  • Zayed, E. M. E., Zedan, H. A., & Gepreel, K. A. (2004). On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV equations. Chaos, Solitons & Fractals, 22, 285–303. doi: 10.1016/j.chaos.2003.12.045
  • Zhang, J., Jiang, F., & Zhao, X. (2010). An improved (G′/G)-expansion method for solving nonlinear evolution equations. International Journal of Computer Mathematics, 87(8), 1716–1725. doi: 10.1080/00207160802450166
  • Zhang, F., Qi, J. M., & Yuan, W. J. (2013). Further Results about Traveling Wave Exact Solutions of the Drinfeld-Sokolov Equations. Journal of Applied Mathematics, 2013, 1–6. doi: 10.1155/2013/523732