1,077
Views
5
CrossRef citations to date
0
Altmetric
Article

Trichoderma strains isolated from Ilex paraguariensis ST. HIL: promising biocontrol agents with chitinolytic activity and plant growth promoter on Lycopersicum esculentum

ORCID Icon, , , , ORCID Icon, & show all
Pages 105-113 | Received 14 Jan 2019, Accepted 28 Jan 2020, Published online: 01 Apr 2020

References

  • Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055. doi:10.1093/jxb/erf072
  • Bae, H., Sicher, R. C., Kim, M. S., Kim, S. H., Strem, M. D., Melnick, R. L., & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11), 3279–3295. doi:10.1093/jxb/erp165
  • Bell, D. K., Wells, H. D., & Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72(4), 379–382. doi:10.1094/Phyto-72-379
  • Bergottini, V. M., Otegui, M. B., Sosa, D. A., Zapata, P. D., Mulot, M., Rebord, M., … Junier, P. (2015). Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hil.) with native plant growth-promoting rhizobacteria: A sustainable alternative to improve crop yield. Biology and Fertility of Soils, 53, 749–755. doi:10.1007/s00374-015-1012-5
  • Carrero-Carrón, I., Trapero-Casas, J. L., Olivares-García, C., Monte, E., Hermosa, R., & Jiménez-Díaz, R. M. (2016). Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection., 88, 45–52.
  • Castillo, F. D. H., Berlanga Padilla, A. M., Gabriel Gallegos Morales, G., Cepeda Siller, M., Rodriguez Herrera, R., Aguilar Gonzales, C. N., & Castillo Reyes, F. (2011). In vitro Antagonist Action of Trichoderma Strains Against Sclerotinia sclerotiorum and Sclerotium cepivorum. American Journal of Agricultural and Biological Sciences, 6, 410–417. doi:10.3844/ajabssp.2011.410.417
  • Desai, S., Reddy, M. S., & Kloepper, J. W. (2002). Comprehensive testing of biocontrol agents. In Gnanamanickam SS. Biological control of crop diseases (pp. 387–420). Boca Raton: CRC Press.
  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Retrieved from http://www.infostat.com.ar.
  • Fages, J., & Arsac, J. F. (1991). Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant and Soil, 137(1), 87–90. doi:10.1007/BF02187437
  • Geraldine, A. M., Cardoso Lopes, F. A., Costa Carvalho, D. D., Barbosa, E. T., Rodrigues, A. R., Brandão, R. S., … Lobo Junior, M. (2013). Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biological Control., 67(3), 308–316. doi:10.1016/j.biocontrol.2013.09.013
  • Harman, G. E., & Kubicek, C. P. (Eds.) (1998). Trichoderma and Gliocladium: Enzymes, biological control and commercial application (1st ed., Vol. 2, pp. 393.). London: Taylor & Francis Ltd.
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. doi:10.1038/nrmicro797
  • Ilany, T., Ashton, M., Montagnini, F., & Martinez, C. (2010). Using agroforestry to improve soil fertility: Effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agroforestry Systems, 80(3), 399–409. doi:10.1007/s10457-010-9317-8
  • Kinkel, L., Wilson, M., & Lindow, S. (2000). Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microbial Ecology, 39(1), 1–11. doi:10.1007/s002489900182
  • Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 12, 1244–1251. doi:10.1111/j.1462-2920.2004.00658.x
  • López, A. C., Alvarenga, A. E., Zapata, P. D., Luna, M. F., & Villalba, L. L. (2019). Trichoderma spp. from Misiones, Argentina: Effective fungi to promote plant growth of the regional crop Ilex paraguariensis St. Hil. Mycology, 10(4), 210–221. doi:10.1080/21501203.2019.1606860
  • Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., & Di Pietro, A. (1993). Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, 83(3), 302–307. doi:10.1094/Phyto-83-302
  • Macías-Rodríguez, L., Guzmán-Gómez, A., García-Juárez, P., & Contreras-Cornejo, H. A. (2018). Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology, 94(9)
  • Mastouri, F., Bjorkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213–1221. doi:10.1094/PHYTO-03-10-0091
  • Monte, E. (2001). Understanding Trichoderma: Between biotechnology and microbial ecology. International Microbiology, 4, 1–4.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–493. doi:10.1111/j.1399-3054.1962.tb08052.x
  • Nelson, N. J. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.
  • Newman, S. E., Brown, W. M., & Ozbay, N. (2002). The effect of the Trichoderma harzianum strains on the growth of tomato seedlings. In XXVI International Horticultural Congress: Managing Soil-Borne Pathogens: A Sound Rhizosphere to Improve Productivity, 635, 131–135.
  • Pitt, J. I., & Hocking, A. D. (2009). Fresh and Perishable Foods. In: Fungi and Food Spoilage (pp. 383–400). Boston, MA: Springer .
  • Prat Kricun, S. D., & Belingheri, L. D. (2003). Cosecha tradicional de la yerba mate. Cerro Azul: INTA, EEA. p. 12.
  • Silva, B. D. S., Ulhoa, C. J., Batista, K. A., Yamashita, F., & Fernandes, K. F. (2011). Potential fungal inhibition by immobilized hydrolytic enzymes from Trichoderma asperellum. Journal of Agricultural and Food Chemistry, 59(15), 8148–8154. doi:10.1021/jf2009815
  • Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195, 19– 23.
  • StatPoint Inc. (2007). STATGRAPHICS Centurion XV, version 15.2.06. Warrenton, USA.
  • Sturz, A. V., Christie, B. R., & Nowak, J. (2000). Bacterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19(1), 1–30. doi:10.1080/07352680091139169
  • Taghdi, Y., Hermosa, R., Domínguez, S., Rubio, M. B., Essalmani, H., Nicolas, C., & Monte, E. (2015). Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato. Phytopathologia Mediterranea, 54, 232–240.
  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65(3), 1061–1070. 1999doi:10.1128/AEM.65.3.1061-1070.1999