792
Views
7
CrossRef citations to date
0
Altmetric
Article

Impact of temperature dependent heat source on MHD natural convection flow between two vertical plates filled with nanofluid with induced magnetic field effect

&
Pages 299-312 | Received 19 Feb 2020, Accepted 24 Jul 2020, Published online: 18 Aug 2020

References

  • Alsabery, A. I., Gedik, E., Chamkha, A. J., & Hashim, I. (2019). Effects of two-phase nanofluid model and localized heat source/sink on natural convection in a square cavity with a solid circular cylinder. Computer Methods in Applied Mechanics and Engineering, 346, 952–981. doi:10.1016/j.cma.2018.09.041
  • Azizian, R., Doroodchi, E., McKrell, T., Buongiorno, J., Hu, L. W., & Moghtaderi, B. (2014). Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. International Journal of Heat and Mass Transfer, 68, 94–109. doi:10.1016/j.ijheatmasstransfer.2013.09.011
  • Bhattacharyya, K. (2011). Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection. Frontiers of Chemical Science and Engineering, 5(3), 376–384. doi:10.1007/s11705-011-1121-0
  • Bhatti, M. M., & Rashidi, M. M. (2016). Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 221, 567–573. doi:10.1016/j.molliq.2016.05.049
  • Cao, L., Liu, D., Jiang, P., Shao, X., Zhou, Q., & Wang, Y. (2019). Multi-physics simulation of dendritic growth in magnetic field assisted solidification. International Journal of Heat and Mass Transfer, 144, 118673. doi:10.1016/j.ijheatmasstransfer.2019.118673
  • Chen, M., He, Y., Zhu, J., & Wen, D. (2016). Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy, 181, 65–74. doi:10.1016/j.apenergy.2016.08.054
  • Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Argonne National Laboratory, IL.
  • Feng, L., Shi, W.-Y., Shoji, E., Kubo, M., & Tsukada, T. (2019). Effects of vertical, horizontal and rotational magnetic fields on convection in an electromagnetically levitated droplet. International Journal of Heat and Mass Transfer, 130, 787–796. doi:10.1016/j.ijheatmasstransfer.2018.10.101
  • Garoosi, F., Jahanshaloo, L., Rashidi, M. M., Badakhsh, A., & Ali, M. E. (2015). Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Journal of Applied Mathematics and Computing, 254, 183–203. doi:10.1016/j.amc.2014.12.116
  • Hayat, T., Waqas, M., Khan, M. I., & Alsaedi, A. (2016). Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. International Journal of Heat and Mass Transfer, 102, 1123–1129. doi:10.1016/j.ijheatmasstransfer.2016.06.090
  • Ibrahim, W., & Makinde, O. D. (2013). The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Computers & Fluids, 86, 433–441. doi:10.1016/j.compfluid.2013.07.029
  • Kandelousi, M. S. (2014). Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. The European Physical Journal Plus, 129(11), 248. doi:10.1140/epjp/i2014-14248-2
  • Kefayati, G. H. R. (2016). Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: Entropy generation). Energy, 107, 917–959. doi:10.1016/j.energy.2016.05.044
  • Khan, W. A., & Makinde, O. D. (2014). MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. International Journal of Thermal Sciences, 81, 118–124. doi:10.1016/j.ijthermalsci.2014.03.009
  • Kumar, D., & Singh, A. K. (2015). Effect of induced magnetic field on natural convection with Newtonian heating/cooling in vertical concentric annuli. Procedia Engineering, 127, 568–574. doi:10.1016/j.proeng.2015.11.346
  • Kumar, D., & Singh, A. K. (2016). Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli. Alexandria Engineering Journal, 55(4), 3125–3133. doi:10.1016/j.aej.2016.08.019
  • Kumar, D., Singh, A. K., & Kumar, D. (2018). Effect of Hall current on the magnetohydrodynamic free convective flow between vertical walls with induced magnetic field. The European Physical Journal Plus, 133(5), 207.
  • Kumar, D., Singh, A. K., & Kumar, D. (2020). Influence of heat source/sink on MHD flow between vertical alternate conducting walls with Hall effect. Physica A: Statistical Mechanics and Its Applications, 544, 123562. doi:10.1016/j.physa.2019.123562
  • Kumar, D., Singh, A. K., & Sarveshanand, M. (2017). Effect of hall current and wall conductance on hydromagnetic natural convective flow between vertical walls. International Journal of Industrial Mathematics, 9(4), 289–299.
  • Kumar, D., Singh, J., Tanwar, K., & Baleanu, D. (2019). A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 138, 1222–1227. doi:10.1016/j.ijheatmasstransfer.2019.04.094
  • Makinde, O. D., & Aziz, A. (2011). Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50(7), 1326–1332. doi:10.1016/j.ijthermalsci.2011.02.019
  • Malvandi, A., & Ganji, D. D. (2015). Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. European Journal of Mechanics – B/Fluids, 52, 169–184. doi:10.1016/j.euromechflu.2015.03.004
  • Mehryan, S. A. M., Tahmasebi, A., Izadi, M., & Ghalambaz, M. (2020). Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. International Journal of Heat and Mass Transfer, 149, 119184. doi:10.1016/j.ijheatmasstransfer.2019.119184
  • Mutuku, W. N., & Makinde, O. D. (2014). Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers & Fluids, 95, 88–97. doi:10.1016/j.compfluid.2014.02.026
  • Nguyen, T. K., Sheikholeslami, M., Jafaryar, M., Shafee, A., Li, Z., Chandra Mouli, K. V. V., & Tlili, I. (2020). Design of heat exchanger with combined turbulator. Journal of Thermal Analysis and Calorimetry, 139(1), 649–659. doi:10.1007/s10973-019-08401-7
  • Qayyum, S., Khan, M. I., Hayat, T., & Alsaedi, A. (2017). A framework for nonlinear thermal radiation and homogeneous-heterogeneous reactions flow based on silver-water and copper-water nanoparticles: A numerical model for probable error. Results in Physics, 7, 1907–1914. doi:10.1016/j.rinp.2017.05.020
  • Roy, N. C., Hossain, M. A., & Gorla, R. S. R. (2020). Natural convection in a cavity with trapezoidal heat sources mounted on a square cylinder. SN Applied Sciences, 2(2), 1–11. doi:10.1007/s42452-019-1927-9
  • Rudraiah, N., Barron, R. M., Venkatachalappa, M., & Subbaraya, C. K. (1995). Effect of a magnetic field on free convection in a rectangular enclosure. International Journal of Engineering Science, 33(8), 1075–1084. doi:10.1016/0020-7225(94)00120-9
  • Sarveshanand, &Singh, A. K. (2015). Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field. Springerplus, 4(1), 333. doi:10.1186/s40064-015-1097-1
  • Sheikholeslami, M., Ashorynejad, H. R., & Rana, P. (2016). Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids, 214, 86–95. doi:10.1016/j.molliq.2015.11.052
  • Sheikholeslami, M., Gorji-Bandpy, M., & Domairry, G. (2013). Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Applied Mathematics and Mechanics, 34(7), 833–846. doi:10.1007/s10483-013-1711-9
  • Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2014a). Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technology., 254, 82–93. doi:10.1016/j.powtec.2013.12.054
  • Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2014b). MHD free convection in an eccentric semi-annulus filled with nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1204–1216. doi:10.1016/j.jtice.2014.03.010
  • Sheikholeslami, M., & Chamkha, A. J. (2016). Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numerical Heat Transfer Part A: Application, 69(10), 1186–1200. doi:10.1080/10407782.2015.1125709
  • Sheikholeslami, M., & Ellahi, R. (2015). Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. International Journal of Heat and Mass Transfer, 89, 799–808. doi:10.1016/j.ijheatmasstransfer.2015.05.110
  • Sheikholeslami, M., & Rokni, H. B. (2017). Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107, 288–299. doi:10.1016/j.ijheatmasstransfer.2016.10.130
  • Sheikholeslami, M., & Shehzad, S. A. (2017). Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. International Journal of Heat and Mass Transfer, 109, 82–92. doi:10.1016/j.ijheatmasstransfer.2017.01.096
  • Tlau, L., & Ontela, S. (2019). Entropy generation in MHD nanofluid flow with heat source/sink. SN Applied Sciences, 1(12), 1672. doi:10.1007/s42452-019-1733-4