825
Views
10
CrossRef citations to date
0
Altmetric
Article

Existence of solution to a class of fractional delay differential equation under multi-points boundary conditions

, &
Pages 471-479 | Received 27 Jul 2020, Accepted 07 Nov 2020, Published online: 30 Nov 2020

References

  • Abbas, M. I. (2015). Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputo’s fractional derivatives. Advances in Difference Equations, 2015(1), 1–19. doi:10.1186/s13662-015-0581-9
  • Agarwal, R. P., Benchohra, M., & Hamani, S. (2010). A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Applicandae Mathematicae, 109(3), 973–1033. doi:10.1007/s10440-008-9356-6
  • Ahmad, B., & Nieto, J. J. (2009). Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Computers & Mathematics with Applications, 58(9), 1838–1843. doi:10.1016/j.camwa.2009.07.091
  • Ahmad, B., & Nieto, J. J. (2010). Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topological Methods in Nonlinear Analysis, 35(2), 295–304.
  • Ahmad, H., & Khan, T. A. (2019). Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations. Journal of Low Frequency Noise, Vibration and Active Control, 38(3–4), 1113–1124. doi:10.1177/1461348418823126
  • Ahmad, H., & Khan, T. A. (2020). Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of motion for simple and damped mass-spring systems. Noise & Vibration Worldwide, 51(1–2), 12–20.
  • Ahmad, H., Khan, T. A., & Cesarano, C. (2019). Numerical solutions of coupled Burgers’ equations. Axioms, 8(4), 119. doi:10.3390/axioms8040119
  • Ahmad, H., Khan, T. A., & Yao, S. W. (2020). Numerical solution of second order Painlevé differential equation. Journal of Mathematics and Computer Science, 21(2), 150–157. doi:10.22436/jmcs.021.02.06
  • Ahmad, H., Seadawy, A. R., & Khan, T. A. (2020a). Numerical solution of Korteweg-de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta, 95(4), 045210. doi:10.1088/1402-4896/ab6070
  • Ahmad, H., Seadawy, A. R., & Khan, T. A. (2020b). Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm. Mathematics and Computers in Simulation, 177, 13–23. doi:10.1016/j.matcom.2020.04.005
  • Ahmad, H., Seadawy, A. R., Khan, T. A., & Thounthong, P. (2020). Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. Journal of Taibah University for Science, 14(1), 346–358. doi:10.1080/16583655.2020.1741943
  • Ameen, R., Jarad, F., & Abdeljawad, T. (2018). Ulam stability for delay fractional differential equations with a generalized Caputo derivative. Filomat, 32(15), 5265–5274. doi:10.2298/FIL1815265A
  • Aoki, T. (1950). On the stability of the linear transformation in Banach spaces. Journal of the Mathematical Society of Japan, 2(1–2), 64–66. doi:10.2969/jmsj/00210064
  • Benchohra, M., Graef, J. R., & Hamani, S. (2008). Existence results for boundary value problems with nonlinear fractional differential equations. Journal of Applied Analysis, 87(7), 851–863. doi:10.1080/00036810802307579
  • Cui, Z., Yu, P., & Mao, Z. (2012). Existence of solutions for nonlocal boundary value problems of nonlinear fractional differential equations. Advances in Dynamical Systems and Applications, 7(1), 31–40.
  • Deimling, K. (1985). Nonlinear functional analysis. New York, NY: Springer-Verlag.
  • El-Sayed, A. M., & Bin-Taher, E. O. (2013). Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order. Electronic Journal of Differential Equations, 64, 1–8.
  • El-Shahed, M., & Nieto, J. J. (2010). Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Computers & Mathematics with Applications, 59(11), 3438–3443.
  • Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore: World Scientific.
  • Hyers, D. H. (1941). On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America, 27(4), 222–224. doi:10.1073/pnas.27.4.222
  • Isaia, F. (2006). On a nonlinear integral equation without compactness. Acta Mathematica Universitatis Comenianae, 75, 233–240.
  • Jung, S. M. (2004). Hyers-Ulam stability of linear differential equations of first order. Applied Mathematics Letters, 17(10), 1135–1140. doi:10.1016/j.aml.2003.11.004
  • Khan, R. A. (2013). Three-point boundary value problems for higher order nonlinear fractional differential equations. Journal of Applied Mathematics & Informatics, 31(1_2), 221–228. doi:10.14317/jami.2013.221
  • Khan, R. A., & Shah, K. (2015). Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Communications on Pure & Applied Analysis, 19, 515–526.
  • Kilbas, A. A., Marichev, A. O. I., & Samko, S. G. (1993). Fractional integrals and derivatives: Theory and applications. Switzerland: Gordon and Breach.
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: North-Holland Mathematics Studies.
  • Kumam, P., Ali, A., Shah, K., & Khan, R. A. (2017). Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order differential equations. The Journal of Nonlinear Sciences and Applications, 10(6), 2986–2997. doi:10.22436/jnsa.010.06.13
  • Li, C. F., Luo, X. N., & Zhou, Y. (2010). Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Computers & Mathematics with Applications, 59(3), 1363–1375.
  • Mawhin, J. (1979). Topological degree methods in nonlinear boundary value problems (No. 40). Providence, RI: American Mathematical Society.
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Hoboken, NJ: Wiley.
  • Podlubny, I. (1999). Fractional sifferential equations: Mathematics in science and engineering. New York, NY: Academic Press.
  • Rahimkhani, P., Ordokhani, Y., & Babolian, E. (2017). Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Journal of Computational and Applied Mathematics, 309, 493–510. doi:10.1016/j.cam.2016.06.005
  • Rakočević, V. (1998). Measure of noncompactness and some applications. Filomat (Niš), 12(2), 87–120.
  • Rehman, M., & Khan, R. A. (2010). Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Applied Mathematics Letters, 23(9), 1038–1044.
  • Saeed, U., & Ur Rehman, M. (2014). Hermite wavelet method for fractional delay differential equations. Journal of Difference Equations, 2014, 1–8. doi:10.1155/2014/359093
  • Shah, K., & Khan, R. A. (2016). Multiple positive solutions to a coupled systems of nonlinear fractional differential equations. SpringerPlus, 5(1), 1–20. doi:10.1186/s40064-016-2656-9
  • Shah, K., Zeb, S., & Khan, R. A. (2015). Existence and uniqueness of solutions for fractional order m-point boundary value problems. Fractional Differential Calculus, 5(2), 171–181.
  • Ulam, S. M. (1960). A collection of mathematical problems (pp. 29). New York, NY: Inter-Science.
  • Ulam, S. M. (1964). Problems in modern mathematics. New York, NY: JohnWiley and Sons.
  • Wang, G. W., & Kara, A. H. (2018). Group analysis, fractional explicit solutions and conservation laws of time fractional generalized burgers equation. Communications in Theoretical Physics, 69(1), 5. doi:10.1088/0253-6102/69/1/5
  • Wang, G. W., & Kara, A. H. (2019). A (2 + 1)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws. Physics Letters A, 383(8), 728–731. doi:10.1016/j.physleta.2018.11.040
  • Wang, G. W., Kara, A. H., & Fakhar, K. (2015). Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dynamics, 82(1–2), 281–287. doi:10.1007/s11071-015-2156-4
  • Wang, G. W., Liu, Y., Wu, Y., & Su, X. (2020). Symmetry analysis for a seventh-order generalized KdV equation and its fractional version in fluid mechanics. Fractals, 28(3), 2050044–2050134. doi:10.1142/S0218348X20500449
  • Wang, G. W., Liu, X. Q., & Zhang, Y. Y. (2013). Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Communications in Nonlinear Science and Numerical Simulation, 18(9), 2321–2326. doi:10.1016/j.cnsns.2012.11.032
  • Wang, G. W., Vega-Guzman, J., Biswas, A., Alzahrani, A. K., & Kara, A. H. (2020). (2 + 1)-dimensional Boiti-Leon-Pempinelli equation-Domain walls, invariance properties and conservation laws. Physics Letters A, 384(10), 126255. doi:10.1016/j.physleta.2020.126255
  • Wang, G. W., Yang, K., Gu, H., Guan, F., & Kara, A. H. (2020). A (2 + 1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nuclear Physics B, 953, 114956. doi:10.1016/j.nuclphysb.2020.114956
  • Wang, J., Lv, L., & Zhou, Y. (2011). Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electronic Journal of Qualitative Theory of Differential Equations, 2011(63), 1–10. doi:10.14232/ejqtde.2011.1.63
  • Wang, J., Zhou, Y., & Wei, W. (2012). Study in fractional differential equations by means of topological degree methods. Numerical Functional Analysis and Optimization, 33(2), 216–238. doi:10.1080/01630563.2011.631069
  • Yang, Y., & Huang, Y. (2013). Spectral-collocation methods for fractional pantograph delay-integrodifferential equations. Advances in Mathematical Physics, 2013, 1–14. doi:10.1155/2013/821327
  • Zhong, W., & Lin, W. (2010). Nonlocal and multiple-point boundary value problem for fractional differential equations. Computers & Mathematics with Applications, 59(3), 1345–1351.