796
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Extension of lower and upper solutions approach for generalized nonlinear fractional boundary value problems

, , &
Pages 249-256 | Received 18 Feb 2022, Accepted 08 Aug 2022, Published online: 23 Aug 2022

References

  • Agarwal, R. P., Ahmad, B., & Alsaedi, A. (2017). Fractional-order differential equations with anti-periodic boundary conditions: A survey. Boundary Value Problems, (1), 1–27.
  • Agarwal, P., Jain, S., & Mansour, T. (2017). Further extended Caputo fractional derivative operator and its applications. Russian Journal of Mathematical Physics, 24(4), 415–425. doi:10.1134/S106192081704001X
  • Agarwal, P., Jleli, M., & Tomar, M. (2017). Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. Journal of Inequalities and Applications, 2017(1), 55. 10.1186/s13660-017-1318-y.
  • Ahmad, B., & Nieto, J. J. (2010). Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topological Methods in Nonlinear Analysis, 35(2), 295–304.
  • Ahmed, I., Kumam, P., Abubakar, J., Borisut, P., & Sitthithakerngkiet, K. (2020). Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition. Advances in Difference Equations, 2020(1), 1–15. doi:10.1186/s13662-020-02887-4
  • Al-Refai, M. (2012). On the fractional derivative at extreme points. Electronic Journal of Qualitative Theory of Differential Equations, 55(55), 1–5. doi:10.14232/ejqtde.2012.1.55
  • Asif, N. A., Talib, I., & Tunc, C. (2015). Existence of solution for first-order coupled system with nonlinear coupled boundary conditions. Boundary Value Problems, (1), 1–9.
  • Atangana, A. (2021). Mathematical model of survival of fractional calculus, critics and their impact: How singular is our world? Advances in Difference Equations, 2021(1). doi:10.1186/s13662-021-03494-7
  • Atangana, A., & Baleanu, D. (2016). New fractional derivative with nonlocal non singular kernel. Thermal Science, 20(2), 763–763. doi:10.2298/TSCI160111018A
  • Aubertin, M., Henneron, T., Piriou, F., Guerin, P., & Mipo, J. C. (2010). Periodic and anti-periodic boundary conditions with the Lagrange multipliers in the FEM. IEEE Transactions on Magnetics, 46(8), 3417–3420. doi:10.1109/TMAG.2010.2046723
  • Baleanu, D., & Agarwal, R. P. (2021). Fractional calculus in the sky. Advances in Difference Equations, 2021(1), 1–59. doi:10.1186/s13662-021-03270-7
  • Baleanu, D., Etemad, S., Mohammadi, H., & Rezapour, S. (2021). A novel modeling of boundary value problems on the glucose graph. Communications in Nonlinear Science and Numerical Simulation, 100, 105844. doi:10.1016/j.cnsns.2021.105844
  • Baleanu, D., Jleli, M., Kumar, S., & Samet, B. (2020). A fractional derivative with two singular kernels and application to a heat conduction problem. Advances in Difference Equations, 2020(1), 1–9. doi:10.1186/s13662-020-02684-z
  • Baleanu, D., Khadijeh, G., Shahram, R., & Mehdi, S. (2020). On a strong-singular fractional differential equation. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02813-8
  • Bohner, M., Tunç, O., & Tunç, C. (2021). Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Computational & Applied Mathematics 40(6), 17. doi:10.1007/s40314-021-01595-3
  • Butt, S. I., Agarwal, P., Yousaf, S., & Guirao, J. L. (2022). Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. Journal of Inequalities and Applications, 2022(1), 1–18. doi:10.1186/s13660-021-02735-3
  • Caputo, M. (1967). Linear model of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astr. Soc, 13(5), 529–539. doi:10.1111/j.1365-246X.1967.tb02303.x
  • Caputo, M. (1969). Elasticitá e Dissipazione. Bologna: Zanichelli.
  • Chauhan, H.V. S., Singh, B., Tunç, C., & Tunç, O. (2022). On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A Matemáticas RACSAM 116(3), 11. doi:10.1007/s13398-022-01246-0
  • Chen, Y., Nieto, J. J., & Ó Regan, D. (2007). Antiperiodic solutions for fully nonlinear first-order differential equations. Mathematical and Computer Modelling, 46(9–10), 1183–1190. doi:10.1016/j.mcm.2006.12.006
  • De Coster, C., & Habets, P. (2006). Two-point boundary value problems: Lower and upper solutions. New York: Elsevier.
  • Delvos, F. J., & Knoche, L. (1999). Lacunary interpolation by antiperiodic trigonometric polynomials. Bit Numerical Mathematics, 39(3), 439–450. doi:10.1023/A:1022314518264
  • Franco, D., & O’Regan, D. (2003). Existence of solutions to second order problems with nonlinear boundary conditions. In Conference Publications (Vol. 2003, No. Special, p. 273). Wilmington, NC, USA: American Institute of Mathematical Sciences.
  • Garoz, D., Gilabert, F. A., Sevenois, R. D. B., Spronk, S. W. F., & Van Paepegem, W. (2019). Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites. Composites Part B. Engineering, 168, 254–266. doi:10.1016/j.compositesb.2018.12.023
  • Ghanbari, B., Kumar, S., & Kumar, R. (2020). A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos, Solitons & Fractals, 133, 109619. doi:10.1016/j.chaos.2020.109619
  • Goyal, R., Agarwal, P., Parmentier, A., & Cesarano, C. (2021). An extension of Caputo fractional derivative operator by use of Wiman’s function. Symmetry, 13(12), 2238. doi:10.3390/sym13122238
  • Graef, J. R., Tunç, C., & Şevli, H. (2021). Razumikhin qualitative analyses of Volterra integro-fractional delay differential equation with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation 103(106037), 12. doi:10.1016/j.cnsns.2021.106037
  • Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore: World Scientific.
  • Jacques, S., De Baere, I., & Van Paepegem, W. (2014). Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites. Composites Science and Technology, 92, 41–54. doi:10.1016/j.compscitech.2013.11.023
  • Jafari, H., & Tajadodi, H. (2018). New method for solving a class of fractional partial differential equations with applications. Thermal Science, 22(Suppl. 1), 277–286. doi:10.2298/TSCI170707031J
  • Jafari, H., Tajadodi, H., & Ganji, R. M. (2019). A numerical approach for solving variable order differential equations based on Bernstein polynomials. Computational and Mathematical Methods in Medicine, 1(5), e1055.
  • Khalil, H., Khalil, M., Hashim, I., & Agarwal, P. (2021). Extension of operational matrix technique for the solution of nonlinear system of Caputo fractional differential equations subjected to integral type boundary constrains. Entropy, 23(9), 1154. doi:10.3390/e23091154
  • Kumar, S., Ghosh, S., Samet, B., & Goufo, E. F. D. (2020). An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Mathematical Methods in the Applied Sciences, 43(9), 6062–6080. doi:10.1002/mma.6347
  • Kumar, S., Kumar, R., Agarwal, R. P., & Samet, B. (2020). A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Mathematical Methods in the Applied Sciences, 43(8), 5564–5578. doi:10.1002/mma.6297
  • Kumar, S., Kumar, R., Cattani, C., & Samet, B. (2020). Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 135, 109811. doi:10.1016/j.chaos.2020.109811
  • Leibniz, G. W. (1965). Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695, in Mathematische Schriften 1849, reprinted 1962; Hildesheim, Germany (Olns Verlag), vol. 2, 301–302.
  • Lin, L., Liu, X., & Fang, H. (2012). Method of lower and upper solutions for fractional differential equations. Electronic Journal of Qualitative Theory of Differential Equations, (100), 1–13.
  • Luchko, Y. (2009). Maximum principle for the generalized time–fractional diffusion equation. Journal of Mathematical Analysis and Applications, 351(1), 218–223. doi:10.1016/j.jmaa.2008.10.018
  • Podlubny, I. (1999). Fractional differential equations. SanDiego: Academic Press.
  • Qiao, Y., & Zhou, Z. (2017). Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Boundary Value Problems, (1), 1–9.
  • Shah, N. A., El-Zahar, E. R., Aljoufi, M. D., & Chung, J. D. (2021). An efficient approach for solution of fractional-order Helmholtz equations. Advances in Difference Equations, 2021(1), 1–19. doi:10.1186/s13662-020-03167-x
  • Shao, J. (2008). Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Physics Letters A, 372(30), 5011–5016. doi:10.1016/j.physleta.2008.05.064
  • Shi, A., & Zhang, S. (2009). Upper and lower solutions method and a fractional differential equation boundary value problem. Electronic Journal of Qualitative Theory of Differential Equations, 30, 1–13.
  • Talib, I., Asif, N. A., & Tunc, C. (2015). Existence of solutions to second order nonlinear coupled system with nonlinear coupled boundary conditions. Electronic Journal of Differential Equations, (313), 1–11.
  • Talib, I., & Bohner, M. (2022). Numerical study of generalized modified Caputo frcational differential equations. International Journal of Computer Mathematics, 1–24. doi:10.1080/00207160.2022.2090836
  • Tunç, O., Atan, Ö., Tunç, C., & Yao, J.C. (2021). Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov–Razumikhin method. Axioms 10(2), 58. doi:10.3390/axioms10020058
  • Tunç, C., & Tunç, O. (2017). A note on the stability and boundedness of solutions to non-linear differential systems of second order, Journal of the Association of Arab Universities for Basic and Applied Sciences 24, 169–175. doi:10.1016/j.jaubas.2016.12.004
  • Tunç, C., Tunç, O., Wang,Y., & Yao, J-C. (2021). Qualitative analyses of differential systems with time-varying delays via Lyapunov–Krasovskiĭ approach, Mathematics 9(11), 1196. doi:10.3390/math9111196
  • Tunç, O., Tunç, C., Yao, J.-C., & Wen, C-F. (2022). New fundamental results on the continuous and discrete integro-differential equations. Mathematics. 10(9), 1377. doi:10.3390/math10091377
  • Wu, W., Owino, J., Al-Ostaz, A., & Cai, L. (2014). Applying periodic boundary conditions in finite element analysis. In SIMULIA community conference Providence, 707–719.