883
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Linear and quadratic multiple regressions analysis on magneto-thermal and chemical reactions on the Casson-Williamson nanofluids boundary layer flow under Soret-Dufour mechanism

ORCID Icon &
Pages 269-286 | Received 05 Apr 2022, Accepted 17 Aug 2022, Published online: 30 Aug 2022

References

  • Alao, F. I., Fagbade, A. I., & Falodun, B. O. (2016). Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. Journal of the Nigerian Mathematical Society, 35(1), 142–158. doi:10.1016/j.jnnms.2016.01.002
  • Anwar, M. I., Rafique, K., Misiran, M., Khan, I., Alharbi, S. O., Thounthong, P., & Nisar, K. S. (2019). Numerical solution of Casson nanofluid flow over a non-linear inclined surface with Soret and Dufour effects by Keller-box method. Frontiers in Physics, 7, 139. doi:10.3389/fphy.2019.00139
  • Atif, S. M., Abbas, M., Rashid, U., & Emadifar, H. (2021). Stagnation point flow of EMHD micropolar nanofluid with mixed convection and slip boundary. Complexity, 2021, 1–13. doi:10.1155/2021/3754922
  • Atif, S. M., Khan, W. A., Abbas, M., & Rashid, U. (2022). Bioconvection mangnetohydrodynamic tangent hyperbolic nanofluid flow with quartic chemical reaction past a paraboloid surface. Computer Modeling in Engineering & Sciences, 130(1), 205–220. doi:10.32604/cmes.2022.017304
  • Das, M., Mahatha, B. K., & Nandkeolyar, R. (2015). Mixed convection and nonlinear radiation in the stagnation point nanofluid flow towards a stretching sheet with homogenous-heterogeneous reactions effects. Procedia Engineering, 127, 1018–1025. doi:10.1016/j.proeng.2015.11.451
  • Falodun, B. O., Ayoade, A. A., & Odetunde, O. (2021). Positive and negative soret and dufour mechanism on unsteady heat and mass transfer flow in the presence of viscous dissipation, thermal and mass buoyancy. Australian Journal of Mechanical Engineering, 1–14. doi:10.1080/14484846.2021.1938950
  • Fredrickson, A. G. (1964). Principles and applications of rheology. Englewood Cliffs (NJ): Prentice-Hall.
  • Gholinia, M., Gholinia, S., Hosseinzadeh, K., & Ganji, D. D. (2018). Investigation on ethylene glycol Nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. Results in Physics, 9, 1525–1533. doi:10.1016/j.rinp.2018.04.070
  • Gireesha, B. J., Kumar, K. G., Ramesh, G. K., & Prasannakumara, B. C. (2018). Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink. Results in Physics, 9, 1555–1563. doi:10.1016/j.rinp.2018.04.006
  • Haroun, N. A., Sibanda, P., Mondal, S., & Motsa, S. S. (2015). On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. Boundary Value Problems, 2015(1), 1–17. doi:10.1186/S13661-015-0289-5
  • Hayat, T., Rashid, M., & Alsaedi, A. (2017). MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet. Results in Physics, 7, 3107–3115. doi:10.1016/j.rinp.2017.08.015
  • Idowu, A. S., & Falodun, B. O. (2020). Effects of thermophoresis, Soret-Dufour on heat and mass transfer flow of magnetohydrodynamics non-Newtonian nanofluid over an inclined plate. Arab Journal of Basic and Applied Sciences, 27(1), 149–165. doi:10.1080/25765299.2020.1746017,
  • Idowu, A. S., & Falodun, B. O. (2020). Variable thermal conductivity and viscosity effects on non-Newtonian fluids flow through a vertical porous plate under Soret-Dufour influence. Mathematical and Computers Simulation, 177, 358–384. doi:10.1016/j.matcom.2020.05.001
  • Ige, E. O. (2021). Analytical simulation of nanoparticle-embedded blood flow control with magnetic field influence through spectra homotopy analysis method. International Journal of Modern Physics B, 35(22), 1–17. doi:10.1142/S021797922150226X
  • Jahan, S., Sakidin, H., Nazar, R., & Pop, I. (2018). Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses. Results in Physics, 10, 395–405. doi:10.1016/j.rinp.2018.06.021
  • Jayachandra Babu, M., & Sandeep, N. (2016). MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alexandria Engineering Journal, 55(3), 2193–2201. doi:10.1016/j.aej.2016.06.009
  • Kataria, H. R., & Patel, H. R. (2016). Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alexandria Engineering Journal, 55(1), 583–595. doi:10.1016/j.aej.2016.01.019
  • Khalid, A., Khan, I., Khan, A., & Shafie, S. (2015). Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Engineering Science and Technology: An International Journal, 18(3), 309–317. doi:10.1016/j.jestch.2014.12.006
  • Khan, N. S., Gul, T., Khan, M. A., Bonyah, E., & Islam, S. (2017). Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms. Results in Physics, 7, 4033–4049. doi:10.1016/j.rinp.2017.10.017
  • Memon, A. A., Memon, M. A., Bhatti, K., & Shaikh, G. M. (2020). Finite element simulation of Newtonian and non-Newtonian fluid through the parallel plates affixed with single screen. European Journal of Pure and Applied Mathematics, 13(1), 69–83. doi:10.29020/nybg.ejpam.v1i1.3586
  • Mondal, H., Pal, D., Chatterjee, S., & Sibanda, P. (2018). Thermophoresis and Soret-Dufour on MHD mixed convection mass transfer over an inclined plate with non-uniform heat source/sink and chemical reaction. Ain Shams Engineering Journal, 9(4), 2111–2121. doi:10.1016/j.asej.2016.10.015
  • Nadeem, S., Ul Haq, R., & Lee, C. (2012). MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica, 19(6), 1550–1553. doi:10.1016/j.scient.2012.10.021
  • Naganthran, K., Md Basir, M. F., Thumma, T., Ige, E. O., Nazar, R., & Tlili, I. (2021). Scaling group analysis of bioconvective micropolar fluid flow and heat transfer in a porous medium. Journal of Thermal Analysis and Calorimetry, 143(3), 1943–1955. doi:10.1007/s10973-020-09733-5
  • Oyelami, F. H., & Falodun, B. O. (2021). Heat and mass transfer of hydrodynamic boundary layer flow along a flat plate with the influence of variable temperature and viscous dissipation. International Journal of Heat and Technology, 39(2), 441–450. doi:10.18280/ijht.390213
  • Oyelami, F. H., Ige, E. O., Saka-Balogun, O. Y., & Adeyemo, O. A. (2021). Study of heat and mass transfer to magnetohydrodynamic (MHD) pulsatile couple stress fluid between two parallel porous plates. Instrumentation Mesure Métrologie, 20(4), 179–185. doi:10.18280/i2m.200401
  • Raju, C. S. K., Sandeep, N., Sugunamma, V., Jayachandra Babu, M., & Ramana Reddy, J. V. (2016). Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface, Engineering Science and Technology. An International Journal, 19, 45–52.
  • Rashid, U., Baleanu, D., Iqbal, A., & Abbas, M. (2020a). Shape effect of nanosize particles on magnetohydrodynamic nanofluid flow and heat transfer over a stretching sheet with entropy generation, entropy. Entropy, 22(10), 1171. doi:10.3390/e22101171
  • Rashid, U., Baleanu, D., Liang, H., Abbas, M., Iqbal, A., & Rahman, J. u (2020b). Marangoni boundary layer flow and heat transfer of graphene–water nanofluid with particle shape effects. Processes, 8(9), 1120. doi:10.3390/pr8091120
  • Rashid, U., Liang, H., Ahmad, H., Abbas, M., Iqbal, A., & Hamed, Y. S. (2021). Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results in Physics, 21(2021), 103812. doi:10.1016/j.rinp.2020.103812
  • Reddy, P. B. A. (2016). Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Engineering Journal, 7(2), 593–602. doi:10.1016/j.asej.2015.12.010
  • Salawu, S. O., & Dada, M. S. (2016). Radiative heat transfer of variable viscosity and thermal conductivity effects on inclined magnetic field with dissipation in a non-Darcy medium. Journal of the Nigerian Mathematical Society, 35(1), 93–106. doi:10.1016/j.jnnms.2015.12.001
  • Srinivasacharya, D., & Kumar, P. V. (2018). Effect of thermal radiation on mixed convection of a nanofluid from an inclined wavy surface embedded in a non-Darcy porous medium with wall heat flux. Propulsion and Power Research, 7(2), 147–157. doi:10.1016/j.jppr.2018.05.002
  • Srinivasacharya, D., RamReddy, C., & Naveen, P. (2018). Double dispersion effect on nonlinear convective flow over an inclined plate in a micropolar fluid saturated non-Darcy porous medium. Engineering Science and Technology: An International Journal, 21(5), 984–995. doi:10.1016/J.JESTCH.2018.07.012.
  • Sulochana, C., & Poornima, M. (2019). Unsteady MHD Casson fluid flow through vertical plate in the presence of Hall current. SN Applied Sciences, 1(12), 2019112. doi:10.1007/s42452-019-1656-0
  • Ullah, A., Selim, M. M., Abdeljawad, T., Ayaz, M., Mlaiki, N., & Ghafoor, A. (2021). A magnetite–water-based nanofluid three-dimensional thin film flow on an inclined rotating surface with non-linear thermal radiations and couple stress effects. Energies, 14(17), 5531. doi:10.3390/en14175531
  • Zhou, M., Fan, F., Zheng, Z., & Ma, C. (2021). Modeling of grouting penetration in porous medium with influence of grain distribution and grout-water interaction. Processes, 10(1), 77. doi:10.3390/pr/0010077