230
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobial polymers: elucidating the role of functional groups on antimicrobial activity

, , , & ORCID Icon
Pages 325-344 | Received 06 Feb 2024, Accepted 06 Jun 2024, Published online: 18 Jun 2024

References

  • Ajithkumar, M. P., Yashoda, M. P., Prasannakumar, S., Sruthi, T. V., & Sameer Kumar, V. B. (2018). Synthesis, characterization, microstructure determination, thermal studies of poly (N-vinyl pyrrolidone-maleic anhydride-methyl methacrylate). Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 55(4), 362–368. doi:10.1080/10601325.2018.1440178
  • Alitongbieke, G., Li, X., Wu, Q., Lin, Z., Huang, J., Liu, J., … Normal, M. (2020). Effect of β -chitosan on the binding interaction between. BioRxiv.
  • Álvarez-Paino, M., Muñoz-Bonilla, A., & Fernández-García, M. (2017). Antimicrobial polymers in the nano-world. Nanomaterials (Basel, Switzerland), 7(2), 48. doi:10.3390/nano7020048
  • Álvarez-Paino, M., Muñoz-Bonilla, A., López-Fabal, F., Gómez-Garcés, J. L., Heuts, J. P. A., & Fernández-García, M. (2015). Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized DMAEMA. Biomacromolecules, 16(1), 295–303. doi:10.1021/bm5014876
  • Amin, R., Yasmin, F., Hosen, M. A., Dey, S., Mahmud, S., Saleh, A., … Kawsar, A. (2021). Synthesis, antimicrobial, anticancer, PASS, molecular docking, molecular dynamic simulations & pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs. Molecules (Basel, Switzerland), 26(22), 7016. doi:10.3390/molecules26227016
  • Anowar Hosen, M., Sultana Munia, N., Al-Ghorbani, M., Baashen, M., Almalki, F. A., Ben Hadda, T., … Kawsar, S. M. A. (2022). Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorganic Chemistry, 125(April), 105850. doi:10.1016/j.bioorg.2022.105850
  • Arora, A., & Mishra, A. (2018). Antibacterial polymers - A mini review. Materials Today: Proceedings, 5(9), 17156–17161. doi:10.1016/j.matpr.2018.04.124
  • Artan, M., Karadeniz, F., Karagozlu, M. Z., Kim, M. M., & Kim, S. K. (2010). Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydrate Research, 345(5), 656–662. doi:10.1016/j.carres.2009.12.017
  • Bieser, A. M., & Tiller, J. C. (2011). Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities. Macromolecular Bioscience, 11(4), 526–534. doi:10.1002/mabi.201000398
  • Bouazizi, N., Vieillard, J., Samir, B., Derf., & F., Le. (2022). Advances in amine-surface functionalization of inorganic adsorbents for water treatment and antimicrobial activities: A review. Polymers, 14(3), 378. doi:10.3390/polym14030378
  • Bouloussa, O., Rondelez, F., & Semetey, V. (2008). A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chemical Communications (Cambridge, England), 8(8), 951–953. doi:10.1039/b716026g
  • Brower, J. L. (2018). The threat and response to infectious diseases (revised). Microbial Ecology, 76(1), 19–36. doi:10.1007/s00248-016-0806-9
  • Carmona-Ribeiro, A. M., & de Melo Carrasco, L. D. (2013). Cationic antimicrobial polymers and their assemblies. International Journal of Molecular Sciences, 14(5), 9906–9946. doi:10.3390/ijms14059906
  • Chakraborty, S., Liu, R., Lemke, J. J., Hayouka, Z., Welch, R. A., Weisblum, B., … Gellman, S. H. (2013). Effects of cyclic vs acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 copolymers. ACS Macro Letters, 2(8), 753–756. doi:10.1021/mz400239r
  • Chamsaz, E. A., Mankoci, S., Barton, H. A., & Joy, A. (2017). Nontoxic cationic coumarin polyester coatings prevent Pseudomonas aeruginosa biofilm formation. ACS Applied Materials & Interfaces, 9(8), 6704–6711. doi:10.1021/acsami.6b12610
  • Chang, Y., McLandsborough, L., & McClements, D. J. (2014). Antimicrobial delivery systems based on electrostatic complexes ofcationic e{open}-polylysine and anionic gum arabic. Food Hydrocolloids, 35, 137–143. doi:10.1016/j.foodhyd.2013.05.004
  • Chen, Y., Wilbon, P. A., Chen, Y. P., Zhou, J., Nagarkatti, M., Wang, C., … Tang, C. (2012). Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Advances, 2(27), 10275–10282. doi:10.1039/c2ra21675b
  • Chindera, K., Mahato, M., Kumar Sharma, A., Horsley, H., Kloc-Muniak, K., Kamaruzzaman, N. F., … Good, L. (2016). The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific Reports, 6(1), 23121. doi:10.1038/srep23121
  • Cornell, R. J., & Donaruma, L. G. (1965). 2-MethacryIoxytropones. Intermediates for the synthesis of biologically active polymers. Journal of Medicinal Chemistry, 8(3), 388–390. doi:10.1021/jm00327a025
  • Correia, V. G., Bonifácio, V. D. B., Raje, V. P., Casimiro, T., Moutinho, G., da Silva, C. L., … Aguiar-Ricardo, A. (2011). Oxazoline-based antimicrobial oligomers: Synthesis by CROP using supercritical CO 2. Macromolecular Bioscience, 11(8), 1128–1137. doi:10.1002/mabi.201100126
  • DeWit, M. A., & Gillies, E. R. (2009). A cascade biodegradable polymer based on alternating cyclization and elimination reactions. Journal of the American Chemical Society, 131(51), 18327–18334. doi:10.1021/ja905343x
  • Ergene, C., & Palermo, E. F. (2018). Antimicrobial synthetic polymers: An update on structure-activity relationships. Current Pharmaceutical Design, 24(8), 855–865. doi:10.2174/1381612824666180213140732
  • Ergene, C., Yasuhara, K., & Palermo, E. F. (2018). Biomimetic antimicrobial polymers: Recent advances in molecular design. Polymer Chemistry, 9(18), 2407–2427. doi:10.1039/C8PY00012C
  • Exley, S. E., Paslay, L. C., Sahukhal, G. S., Abel, B. A., Brown, T. D., McCormick, C. L., … Morgan, S. E. (2015). Antimicrobial peptide mimicking primary amine and guanidine containing methacrylamide copolymers prepared by raft polymerization. Biomacromolecules, 16(12), 3845–3852. doi:10.1021/acs.biomac.5b01162
  • Farshbaf, M., Davaran, S., Zarebkohan, A., Annabi, N., Akbarzadeh, A., & Salehi, R. (2018). Significant role of cationic polymers in drug delivery systems. Artificial Cells, Nanomedicine and Biotechnology, 46(8), 1872–1891. doi:10.1080/21691401.2017.1395344
  • Figg, C. A., Hickman, J. D., Scheutz, G. M., Shanmugam, S., Carmean, R. N., Tucker, B. S., … Sumerlin, B. S. (2018). Color-coding visible light polymerizations to elucidate the activation of trithiocarbonates using Eosin y. Macromolecules, 51(4), 1370–1376. doi:10.1021/acs.macromol.7b02533
  • Frank, D. S., & Matzger, A. J. (2019). Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Molecular Pharmaceutics, 16(2), 682–688. doi:10.1021/acs.molpharmaceut.8b00972
  • Gabriel, G. J., Madkour, A. E., Dabkowski, J. M., Nelson, C. F., Nüsslein, K., & Tew, G. N. (2008). Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules, 9(11), 2980–2983. doi:10.1021/bm800855t
  • Ganewatta, M. S., & Tang, C. (2015). Controlling macromolecular structures towards effective antimicrobial polymers. Polymer, 63, A1–A29. doi:10.1016/j.polymer.2015.03.007
  • Gelman, M. A., Weisblum, B., Lynn, D. M., & Gellman, S. H. (2004). Biocidal activity of polystyrenes that are cationic by virtue of protonation. Organic Letters, 6(4), 557–560. doi:10.1021/ol036341+
  • Gody, G., Barbey, R., Danial, M., & Perrier, S. (2015). Ultrafast RAFT polymerization: Multiblock copolymers within minutes. Polymer Chemistry, 6(9), 1502–1511. doi:10.1039/C4PY01251H
  • Gomes, A. P., Mano, J. F., Queiroz, J. A., & Gouveia, I. C. (2013). Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: A new strategy to develop bioactive textiles. Polymers for Advanced Technologies, 24(11), 1005–1010. doi:10.1002/pat.3176
  • González-Henríquez, C. M., Sarabia-Vallejos, M. A., & Hernandez, J. R. (2019). Antimicrobial polymers for additive manufacturing. International Journal of Molecular Sciences, 20(5), 1210. doi:10.3390/ijms20051210
  • Gopal, J.,Muthu, M.,Pushparaj, S. S. C., &Sivanesan, I. (2023). Anti-COVID-19 credentials of Chitosan composites and derivatives: Future scope?. Antibiotics, 12(4), 665 10.3390/antibiotics12040665.
  • Gottenbos, B., Van Der Mei, H. C., Klatter, F., Nieuwenhuis, P., & Busscher, H. J. (2002). In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 23(6), 1417–1423. doi:10.1016/S0142-9612(01)00263-0
  • Grace, J. L., Huang, J. X., Cheah, S. E., Truong, N. P., Cooper, M. A., Li, J., … Whittaker, M. R. (2016). Antibacterial low molecular weight cationic polymers: Dissecting the contribution of hydrophobicity, chain length and charge to activity. RSC Advances, 6(19), 15469–15477. doi:10.1039/C5RA24361K
  • Haktaniyan, M., & Bradley, M. (2022). Polymers showing intrinsic antimicrobial activity. Chemical Society Reviews, 51(20), 8584–8611. doi:10.1039/d2cs00558a
  • Hassan, M. A., Omer, A. M., Abbas, E., Baset, W. M. A., & Tamer, T. M. (2018). Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Scientific Reports, 8(1), 11416. doi:10.1038/s41598-018-29650-w
  • Hathout, R. M., & Kassem, D. H. (2020). Positively charged electroceutical spun chitosan nanofibers can protect health care providers from COVID-19 infection : An opinion. Frontiers in Bioengineering and Biotechnology, 8(August), 885. doi:10.3389/fbioe.2020.00885
  • Hemp, S. T., Smith, A. E., Bryson, J. M., Allen, M. H., & Long, T. E. (2012). Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery. Biomacromolecules, 13(8), 2439–2445. doi:10.1021/bm300689f
  • Hernández-Montelongo, J., Nascimento, V. F., Murillo, D., Taketa, T. B., Sahoo, P., Souza, A. A., … Cotta, M. A. (2016). Nanofilms of hyaluronan/chitosan assembled layer-by-layer : An antibacterial surface for Xylella fastidiosa. Carbohydrate Polymers, 136, 1–11. doi:10.1016/j.carbpol.2015.08.076
  • Hirayama, M. (2011). The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Science, 16(1), 23–31. doi:10.4265/bio.16.23
  • Huang, K. S., Yang, C. H., Huang, S. L., Chen, C. Y., Lu, Y. Y., & Lin, Y. S. (2016). Recent advances in antimicrobial polymers: A mini-review. International Journal of Molecular Sciences, 17(9), 1578. doi:10.3390/IJMS17091578
  • Hung, A. Y.-T. (2018). Designing antimicrobial polymer coating to inhibit pathogenic and spoilage microorganisms Thesis, March.
  • Ikeda, T., Tazuke, S., & Suzuki, Y. (1984). Biologically active polycations.4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromolekulare Chemie Macromolecular Chemistry and Physics, 185, 869–876.
  • Jackson, N., Czaplewski, L., & Piddock, L. J. V. (2018). Discovery and development of new antibacterial drugs: Learning from experience? The Journal of Antimicrobial Chemotherapy, 73(6), 1452–1459. doi:10.1093/jac/dky019
  • Jain, A., Duvvuri, L. S., Farah, S., Beyth, N., Domb, A. J., Khan, W., … Beyth, N. (2014). Antimicrobial polymers. Advanced Healthcare Materials, 3(12), 1969–1985. doi:10.1002/ADHM.201400418
  • Jiang, X., Li, Z., Young, D. J., Liu, M., Wu, C., Wu, Y. L., & Loh, X. J. (2021). Toward the prevention of coronavirus infection: What role can polymers play? Materials Today. Advances, 10, 100140. doi:10.1016/j.mtadv.2021.100140
  • Judzewitsch, P. R., Nguyen, T. K., Shanmugam, S., Wong, E. H. H., & Boyer, C. (2018). Towards sequence-controlled antimicrobial polymers: Effect of polymer block order on antimicrobial activity. Angewandte Chemie International Edition, 57(17), 4559–4564. doi:10.1002/anie.201713036
  • Kalathiya, U., Padariya, M., Mayordomo, M., Lisowska, M., Nicholson, J., Singh, A., … Alfaro, J. A. (2020). Highly conserved homotrimer cavity formed by the sars-cov-2 spike glycoprotein: A novel binding site. Journal of Clinical Medicine, 9(5), 1473. doi:10.3390/jcm9051473
  • Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., … De Fatima Pina, M. (2019). Antimicrobial polymers: The potential replacement of existing antibiotics? International Journal of Molecular Sciences, 20(11), 2747. doi:10.3390/ijms20112747
  • Kandeel, M., Al-Taher, A., Park, B. K., Kwon, H. J., & Al-Nazawi, M. (2020). A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. Journal of Medical Virology, 92(9), 1665–1670. doi:10.1002/jmv.25928
  • Kara, F., Aksoy, E. A., Yuksekdag, Z., Hasirci, N., & Aksoy, S. (2014). Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydrate Polymers, 112, 39–47. doi:10.1016/j.carbpol.2014.05.019
  • Kenawy, E. R., Imam Abdel-Hay, F., Abou El-Magd, A., & Mahmoud, Y. (2006). Synthesis and antimicrobial activity of some polymers derived from modified amino polyacrylamide by reacting it with benzoate esters and benzaldehyde derivatives. Journal of Applied Polymer Science, 99(5), 2428–2437. doi:10.1002/app.22249
  • Kenawy, E. R., Worley, S. D., & Broughton, R. (2007). The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules, 8(5), 1359–1384. doi:10.1021/BM061150Q/ASSET/IMAGES/LARGE/BM061150QF00031.JPEG
  • Kozon-Markiewicz, D., Kopiasz, R. J., Głusiec, M., Łukasiak, A., Bednarczyk, P., & Jańczewski, D. (2023). Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL). Colloids and Surfaces. B, Biointerfaces, 229(July), 113480. doi:10.1016/j.colsurfb.2023.113480
  • Krishnan, S., Ward, R. J., Hexemer, A., Sohn, K. E., Lee, K. L., Angert, E. R., … Ober, C. K. (2006). Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. Langmuir: The ACS Journal of Surfaces and Colloids, 22(26), 11255–11266. doi:10.1021/la061384v
  • Kügler, R., Bouloussa, O., & Rondelez, F. (2005). Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology (Reading, England), 151(Pt 5), 1341–1348. doi:10.1099/mic.0.27526-0
  • Kuroki, A., Sangwan, P., Qu, Y., Peltier, R., Sanchez-Cano, C., Moat, J., … Perrier, S. (2017). Sequence control as a powerful tool for improving the selectivity of antimicrobial polymers. ACS Applied Materials & Interfaces, 9(46), 40117–40126. doi:10.1021/acsami.7b14996
  • Kwaśniewska, D., Chen, Y. L., & Wieczorek, D. (2020). Biological activity of quaternary ammonium salts and their derivatives. Pathogens (Basel, Switzerland), 9(6), 459. doi:10.3390/pathogens9060459
  • Larson, A. M., Oh, H. S., Knipe, D. M., & Klibanov, A. M. (2014). Decreasing herpes simplex viral infectivity in solution by surface-immobilized and suspended N, N-Dodecyl, methylpolyethylenimine. Pharmaceutical Research, 30(1), 25–31. doi:10.1007/s11095-012-0825-2.Decreasing
  • Leshabane, M., Dziwornu, G. A., Coertzen, D., Reader, J., Moyo, P., Watt, V., … Birkholtz, L. (2021). Benzimidazole derivatives are potent against multiple life cycle stages of plasmodium falciparum malaria parasites. ACS Infectious Diseases, 7(7), 1945–1955. doi:10.1021/acsinfecdis.0c00910
  • Li, G., & Shen, J. (2000). Study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. Journal of Applied Polymer Science, 78(3), 676–684. doi:10.1002/1097-4628(20001017)78:3<676::AID-APP240>3.0.CO;2-E
  • Lichter, J. A., & Rubner, M. F. (2009). Polyelectrolyte multilayers with intrinsic antimicrobial functionality: The importance of mobile polycations. Langmuir: The ACS Journal of Surfaces and Colloids, 25(13), 7686–7694. doi:10.1021/la900349c
  • Lim, S. H., & Hudson, S. M. (2003). Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science - Polymer Reviews, 43(2), 223–269. doi:10.1081/MC-120020161
  • Lin, J., Chen, X., Chen, C., Hu, J., Zhou, C., Cai, X., … Liu, H. (2018). Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Applied Materials & Interfaces, 10(7), 6124–6136. doi:10.1021/acsami.7b16235
  • Lin, J., Tiller, J. C., Lee, S. B., Lewis, K., & Klibanov, A. M. (2002). Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnology Letters, 24(10), 801–805. doi:10.1023/A:1015584423358
  • Liu, H., Elkin, I., Chen, J., & Klibanov, A. M. (2015). Why do some immobilized N-Alkylated polyethylenimines far surpass others in inactivating influenza viruses? Biomacromolecules, 16(1), 351–356. doi:10.1021/bm5015427
  • Liu, S. G., Li, N., Ling, Y., Kang, B. H., Geng, S., Li, N. B., & Luo, H. Q. (2016). pH-mediated fluorescent polymer particles and gel from hyperbranched polyethylenimine and the mechanism of intrinsic fluorescence. Langmuir: The ACS Journal of Surfaces and Colloids, 32(7), 1881–1889. doi:10.1021/acs.langmuir.6b00201
  • Liu, Y., Song, L., Feng, N., Jiang, W., Jin, Y., & Li, X. (2020). Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: Lipase-catalyzed polymerization. RSC Advances, 10(59), 36230–36240. doi:10.1039/d0ra07138b
  • Liu, Z., Zhang, Z., Zhou, C., & Jiao, Y. (2010). Hydrophobic modifications of cationic polymers for gene delivery. Progress in Polymer Science, 35(9), 1144–1162. doi:10.1016/j.progpolymsci.2010.04.007
  • Locock, K. E. S., Michl, T. D., Griesser, H. J., Haeussler, M., & Meagher, L. (2014). Structure–activity relationships of guanylated antimicrobial polymethacrylates. Pure and Applied Chemistry, 86(8), 1281–1291. doi:10.1515/pac-2014-0213
  • Locock, K. E. S., Michl, T. D., Valentin, J. D. P., Vasilev, K., Hayball, J. D., Qu, Y., … Haeussler, M. (2013). Guanylated polymethacrylates: A class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules, 14(11), 4021–4031. doi:10.1021/bm401128r
  • Lou, Y., & Palermo, E. F. (2024). Dynamic antimicrobial poly(disulfide) coatings exfoliate biofilms on demand via triggered depolymerization. Advanced Healthcare Materials, 13(11), e2303359. doi:10.1002/adhm.202303359
  • Lowe, A., Deng, W., Smith, D. W., & Balkus, K. J. (2012). Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules, 45(15), 5894–5900. doi:10.1021/ma300913w
  • Lu, Y., Wu, Y., Liang, J., Libera, M. R., & Sukhishvili, S. A. (2015). Self-defensive antibacterial layer-by-layer hydrogel coatings with pH-triggered hydrophobicity. Biomaterials, 45, 64–71. doi:10.1016/j.biomaterials.2014.12.048
  • Mahat, M. M., Sabere, A. S. M., Azizi, J., & Amdan, N. A. N. (2021). Potential applications of conducting polymers to reduce secondary bacterial infections among COVID-19 patients: A review. Emergent Materials, 4(1), 279–292. doi:10.1007/s42247-021-00188-4
  • Mankoci, S., Kaiser, R. L., Sahai, N., Barton, H. A., & Joy, A. (2017). Bactericidal peptidomimetic polyurethanes with remarkable selectivity against Escherichia coli. ACS Biomaterials Science & Engineering, 3(10), 2588–2597. doi:10.1021/acsbiomaterials.7b00309
  • Maowa, J., Alam, A., Rana, K. M., Dey, S., Hosen, A., Fujii, Y., … Kaws, S. M. A. (2021). Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. Ovidius University Annals of Chemistry, 32(1), 6–21. doi:10.2478/auoc-2021-0002
  • Martinez, L. R., Mihu, M. R., Han, G., Frases, S., Cordero, R. J. B., Casadevall, A., … Nosanchuk, J. D. (2010). The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials, 31(4), 669–679. doi:10.1016/j.biomaterials.2009.09.087
  • Másson, M. (2024). The quantitative molecular weight-antimicrobial activity relationship for chitosan polymers, oligomers, and derivatives. Carbohydrate Polymers, 337(1), 122159. doi:10.1016/j.carbpol.2024.122159
  • Mignani, S., Rodrigues, J., Tomas, H., Roy, R., Shi, X., & Majoral, J. P. (2018). Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 136-137, 73–81. doi:10.1016/j.addr.2017.11.007
  • Milewska, A., Chi, Y., Szczepanski, A., Barreto-Duran, E., Liu, K., Liu, D., … Pyrc, K. (2020). HTCC as a highly effective polymeric inhibitor of SARS-CoV-2 and MERS-CoV. BioRxiv, 3 2020.03.29.014183.
  • Milewska, A., Ciejka, J., Kaminski, K., Karewicz, A., Bielska, D., Zeglen, S., … Szczubialka, K. (2013). Novel polymeric inhibitors of HCoV-NL63. Antiviral Research, 97(2), 112–121. doi:10.1016/j.antiviral.2012.11.006
  • Milović, N. M., Wang, J., Lewis, K., & Klibanov, A. M. (2005). Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnology and Bioengineering, 90(6), 715–722. doi:10.1002/bit.20454
  • Morris, H., & Murray, R. (2021). Medical Textiles. LTD. doi:10.1201/9781003170570
  • Mubaraki, M. A., Ali, J., Khattak, B., Fozia, F., Khan, T. A., Hussain, M., … Ahmad, I. (2024). Characterization and antibacterial potential of iron oxide nanoparticles in eradicating uropathogenic E. coli. ACS Omega, 9(1), 166–177. doi:10.1021/acsomega.3c03078
  • Munia, N. S., Hosen, M. A., Azzam, K. M. A., Al-Ghorbani, M., Baashen, M., Hossain, M. K., … Kawsar, S. M. A. (2022). Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5′-O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. Nucleosides, Nucleotides & Nucleic Acids, 41(10), 1036–1083. doi:10.1080/15257770.2022.2096898
  • Murata, H., Koepsel, R. R., Matyjaszewski, K., & Russell, A. J. (2007). Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomaterials, 28(32), 4870–4879. doi:10.1016/j.biomaterials.2007.06.012
  • Musa, N. H., Chang, Z. H., Teow, Y. H., Rosli, N. A., & Mohammad, A. W. (2022). A review on polymer based antimicrobial coating. Journal of Biochemistry, Microbiology and Biotechnology, 10(SP2), 1–8. doi:10.54987/jobimb.v10iSP2.720
  • Nagaraja, A., Jalageri, M. D., Puttaiahgowda, Y. M., Raghava Reddy, K., & Raghu, A. V. (2019). A review on various maleic anhydride antimicrobial polymers. Journal of Microbiological Methods, 163(February), 105650. doi:10.1016/j.mimet.2019.105650
  • Nasri, N., Rusli, A., Teramoto, N., Jaafar, M., Ishak, K. M. K., Shafiq, M. D., & Hamid, Z. A. A. (2021). Past and current progress in the development of antiviral/antimicrobial polymer coating towards covid-19 prevention: A review. Polymers, 13(23), 4234. doi:10.3390/polym13234234
  • Nguyen, T. K., Lam, S. J., Ho, K. K. K., Kumar, N., Qiao, G. G., Egan, S., … Wong, E. H. H. (2017). Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria. ACS Infectious Diseases, 3(3), 237–248. doi:10.1021/acsinfecdis.6b00203
  • Ornelas-Megiatto, C., Wich, P. R., & Fréchet, J. M. J. (2012). Polyphosphonium polymers for siRNA delivery: An efficient and nontoxic alternative to polyammonium carriers. Journal of the American Chemical Society, 134(4), 1902–1905. doi:10.1021/ja207366k
  • Pachla, J., Kopiasz, R. J., Marek, G., Tomaszewski, W., Głogowska, A., Kowalczyk, S., … Ciach, T. (2023). Polytrimethylenimines: Highly potent antibacterial agents with activity and toxicity modulated by the polymer molecular weight. doi:10.1021/acs.biomac.3c00139
  • Palermo, E. F., & Kuroda, K. (2009). Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules, 10(6), 1416–1428. doi:10.1021/bm900044x
  • Palermo, E. F., & Kuroda, K. (2010). Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied Microbiology and Biotechnology, 87(5), 1605–1615. doi:10.1007/s00253-010-2687-z
  • Palermo, E. F., Vemparala, S., & Kuroda, K. (2012). Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules, 13(5), 1632–1641. doi:10.1021/bm300342u
  • Parcheta, M., & Sobiesiak, M. (2023). Preparation and functionalization of polymers with antibacterial properties—Review of the recent developments. Materials, 16(12), 4411. doi:10.3390/ma16124411
  • Paslay, L. C., Abel, B. A., Brown, T. D., Koul, V., Choudhary, V., McCormick, C. L., & Morgan, S. E. (2012). Antimicrobial poly(methacrylamide) derivatives prepared via aqueous RAFT polymerization exhibit biocidal efficiency dependent upon cation structure. Biomacromolecules, 13(8), 2472–2482. doi:10.1021/bm3007083
  • Pauls, T. (2016). Chitosan as an antiviral. University of Arkansas. https://scholarworks.uark.edu/bmeguht/28/.
  • Pham, P., Oliver, S., & Boyer, C. (2023). Design of antimicrobial polymers. Macromolecular Chemistry and Physics, 224(3), 1–28. doi:10.1002/macp.202200226
  • Piskláková, L., Skuhrovcová, K., Bártová, T., Seidelmannová, J., Vondrovic, Š., & Velebný, V. (2024). Trends in the incorporation of antiseptics into natural polymer-based nanofibrous mats. Polymers, 16(5), 664. doi:10.3390/polym16050664
  • Pu, Y., Hou, Z., Khin, M. M., Zamudio-Vázquez, R., Poon, K. L., Duan, H., & Chan-Park, M. B. (2017). Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped poly[2-(dimethylamino)ethyl methacrylate]-based copolymers with an inorganic core. Biomacromolecules, 18(1), 44–55. doi:10.1021/acs.biomac.6b01279
  • Qiao, Z., Wang, Z., Zhang, C., Yuan, S., Zhu, Y., Wang, J., & Wang, S. (2012). PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal, 59(1), 215–228. doi:10.1002/aic
  • Qiu, H., Si, Z., Luo, Y., Feng, P., Wu, X., Hou, W., … Huang, D. (2020). The mechanisms and the applications of antibacterial polymers in surface modification on medical devices. Frontiers in Bioengineering and Biotechnology, 8(vember), 910. doi:10.3389/fbioe.2020.00910
  • Raafat, D., & Sahl, H. G. (2009). Chitosan and its antimicrobial potential - A critical literature survey. Microbial Biotechnology, 2(2), 186–201. doi:10.1111/j.1751-7915.2008.00080.x
  • Ren, W., Cheng, W., Wang, G., & Liu, Y. (2017). Developments in antimicrobial polymers. Journal of Polymer Science Part A: Polymer Chemistry, 55(4), 632–639. doi:10.1002/pola.28446
  • Riga, E. K., Vöhringer, M., Widyaya, V. T., & Lienkamp, K. (2017). Polymer-based surfaces designed to reduce biofilm formation: From antimicrobial polymers to strategies for long-term applications. Macromolecular Rapid Communications, 38(20) doi:10.1002/marc.201700216
  • Samal, S. K., Dash, M., Vlierberghe, S., Van, Kaplan, D. L., Chiellini, E., Blitterswijk, C., … Dubruel, P. (2012). Cationic polymers and their therapeutic potential. Chemical Society Reviews, 41(21), 7147–7194. doi:10.1039/c2cs35094g
  • Santos, M. R. E., Fonseca, A. C., Mendonça, P. V., Branco, R., Serra, A. C., Morais, P. V., & Coelho, J. F. J. (2016). Recent developments in antimicrobial polymers: A review. Materials (Basel, Switzerland), 9(7), 599. doi:10.3390/MA9070599
  • Sayed, S., & Jardine, M. A. (2015). Antimicrobial biopolymers. Advanced Functional Materials, 493–533 doi:10.1002/9781118998977.ch12
  • Schandock, F., Riber, C. F., Röcker, A., Müller, J. A., Harms, M., Gajda, P., … Zelikin, A. N. (2017). Macromolecular antiviral agents against zika, ebola, SARS, and other pathogenic viruses. Advanced Healthcare Materials, 6(23) doi:10.1002/adhm.201700748
  • Sellenet, P. H., Allison, B., Applegate, B. M., & Youngblood, J. P. (2007). Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules, 8(1), 19–23. doi:10.1021/bm0605513
  • Sharma, N., Modak, C., Singh, P. K., Kumar, R., Khatri, D., & Singh, S. B. (2021). Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2? International Journal of Biological Macromolecules, 179, 33–44. doi:10.1016/j.ijbiomac.2021.02.090
  • Siedenbiedel, F., & Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers, 4(1), 46–71. doi:10.3390/polym4010046
  • Sinclair, T. R., Robles, D., Raza, B., van den Hengel, S., Rutjes, S. A., de Roda Husman, A. M., … Roesink, H. D. W. (2018). Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 551(March), 33–41. doi:10.1016/j.colsurfa.2018.04.056
  • Smola-Dmochowska, A., Lewicka, K., Macyk, A., Rychter, P., Pamuła, E., & Dobrzyński, P. (2023). Biodegradable polymers and polymer composites with antibacterial properties. International Journal of Molecular Sciences, 24(8), 7473. doi:10.3390/ijms24087473
  • Srisa, A., Promhuad, K., San, H., Laorenza, Y., Wongphan, P., Wadaugsorn, K., … Harnkarnsujarit, N. (2022). Antibacterial, antifungal and antiviral polymeric food packaging in post-COVID-19 era. Polymers, 14(19), 4042. doi:10.3390/polym14194042
  • Stelmakh, S. A., Grigor’eva, M. N., Garkusheva, N. M., Lebedeva, S. N., Ochirov, O. S., Mognonov, D. M., … Batoev, V. B. (2021). Studies of new biocidal polyguanidines: Antibacterial action and toxicity. Polymer Bulletin, 78(4), 1997–2008. doi:10.1007/s00289-020-03197-1
  • Sukhareva, K., Chernetsov, V., & Burmistrov, I. (2024). A review of antimicrobial polymer coatings on steel for the food processing industry. Polymers, 16(6), 809. doi:10.3390/polym16060809
  • Takahashi, H., Caputo, G. A., Vemparala, S., & Kuroda, K. (2017). Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjugate Chemistry, 28(5), 1340–1350. doi:10.1021/acs.bioconjchem.7b00114
  • Talu, M., Uzluk, E., & Yüksel, B. (2010). Synthesis, characterization and bactericidal properties of poly(N-vinyl-2-pyrrolidone-co-maleic anhydride-co-N-isopropyl acrylamide). Macromolecular Symposia, 297(1), 188–199. doi:10.1002/masy.200900140
  • Teixeira-Santos, R., Lima, M., Gomes, L. C., & Mergulhão, F. J. (2021). Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. iScience, 24(12), 103480. doi:10.1016/j.isci.2021.103480
  • Tejero, R., López, D., López-Fabal, F., Gómez-Garcés, J. L., & Fernández-García, M. (2015). High efficiency antimicrobial thiazolium and triazolium side-chain polymethacrylates obtained by controlled alkylation of the corresponding azole derivatives. Biomacromolecules, 16(6), 1844–1854. doi:10.1021/acs.biomac.5b00427
  • Teratanatorn, P., Hoskins, R., Swift, T., Douglas, C. W. I., Shepherd, J., & Rimmer, S. (2017). Binding of bacteria to poly(N-isopropylacrylamide) modified with vancomycin: comparison of behavior of linear and highly branched polymers. Biomacromolecules, 18(9), 2887–2899. doi:10.1021/acs.biomac.7b00800
  • Tew, G. N., Scott, R. W., Klein, M. L., & Degrado, W. F. (2010). De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Accounts of Chemical Research, 43(1), 30–39. doi:10.1021/ar900036b
  • Thoma, L. M., Boles, B. R., & Kuroda, K. (2014). Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules, 15(8), 2933–2943. doi:10.1021/bm500557d
  • Tiller, J. C., Liao, C. J., Lewis, K., & Klibanov, A. M. (2001a). Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 5981–5985. doi:10.1073/pnas.111143098
  • Tiller, J. C., Liao, C., Lewis, K., & Klibanov, A. M. (2001b). Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences, 98(11), 5981–5985. doi:10.1073/pnas.111143098
  • Vigliotta, G., Mella, M., Rega, D., & Izzo, L. (2012). Modulating antimicrobial activity by synthesis: Dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules, 13(3), 833–841. doi:10.1021/bm2017349
  • Wahid, F., Wang, F.-P., Xie, Y.-Y., Chu, L.-Q., Jia, S.-R., Duan, Y.-X., … Zhong, C. (2019). Colloids and surfaces B : Biointerfaces reusable ternary PVA films containing bacterial cellulose fibers and ε - Polylysine with improved mechanical and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 183(July), 110486. doi:10.1016/j.colsurfb.2019.110486
  • Wang, J., Chen, Y. P., Yao, K., Wilbon, P. A., Zhang, W., Ren, L., … Tang, C. (2012). Robust antimicrobial compounds and polymers derived from natural resin acids. Chemical Communications (Cambridge, England), 48(6), 916–918. doi:10.1039/c1cc16432e
  • Wang, Y., Jett, S. D., Crum, J., Schanze, K. S., Chi, E. Y., & Whitten, D. G. (2013). Understanding the dark and light-enhanced bactericidal action of cationic conjugated polyelectrolytes and oligomers. Langmuir: The ACS Journal of Surfaces and Colloids, 29(2), 781–792. doi:10.1021/la3044889
  • Wee, V., Ng, L., Pang, J., Tan, K., Leong, J., Voo, Z. X., & Hedrick, J. L. (2014). Antimicrobial polycarbonates: Investigating the impact of nitrogen- containing heterocycles as quaternizing agents. Macromolecules, 47, 1285–1291.
  • Wiegand, C., Bauer, M., Hipler, U. C., & Fischer, D. (2013). Poly(ethyleneimines) in dermal applications: Biocompatibility and antimicrobial effects. International Journal of Pharmaceutics, 456(1), 165–174. doi:10.1016/j.ijpharm.2013.08.001
  • Xue, Y., Pan, Y., Xiao, H., & Zhao, Y. (2014). Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv, 4(87), 46887–46895. doi:10.1039/C4RA08634A
  • Xue, Y., Xiao, H., & Zhang, Y. (2015). Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International Journal of Molecular Sciences, 16(2), 3626–3655. doi:10.3390/ijms16023626
  • Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules (Basel, Switzerland), 26(23), 7136. doi:10.3390/molecules26237136
  • Yang, Y., Cai, Z., Huang, Z., Tang, X., & Zhang, X. (2018). Antimicrobial cationic polymers: From structural design to functional control. Polymer Journal, 50(1), 33–44. doi:10.1038/pj.2017.72
  • Ye, R., Xu, H., Wan, C., Peng, S., Wang, L., Xu, H., … Wei, H. (2013). Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochemical and Biophysical Research Communications, 439(1), 148–153. doi:10.1016/j.bbrc.2013.08.001
  • Zaltsman, N., Kesler-Shvero, D., Weiss, E. I., & Beyth, N. (2016). Synthesis variants of quaternary ammonium polyethyleneimine nanoparticles and their antibacterial efficacy in dental materials. Journal of Applied Biomaterials & Functional Materials, 14(2), 205–211. doi:10.5301/jabfm.5000269
  • Zhang, M., Teo, J. J., Liu, S., Liang, Z. C., Ding, X., Ono, R. J., … Hedrick, J. L. (2016). Simple and cost-effective polycondensation routes to antimicrobial consumer products. Polymer Chemistry, 7(23), 3923–3932. doi:10.1039/C6PY00592F
  • Zheng, Z., Xu, Q., Guo, J., Qin, J., Mao, H., Wang, B., & Yan, F. (2016). Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: Effect of alkyl chain length and cations. ACS Applied Materials & Interfaces, 8(20), 12684–12692. doi:10.1021/acsami.6b03391
  • Zou, P., Laird, D., Riga, E. K., Deng, Z., Dorner, F., Guevara-Solarte, D. L., … Lienkamp, K. (2015). Antimicrobial and cell-compatible surfaceattached polymer networks – How the correlation of chemical structure to physical and biological data leads to a modified mechanism of action. †Journal of Materials Chemistry B, 3(30), 6224–6238. doi:10.1039/C5TB00906E
  • Zuniga, J. M., & Cortes, A. (2020). The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Review of Medical Devices, 17(6), 477–481. doi:10.1080/17434440.2020.1756771