99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous removal of diclofenac sodium, cadmium and bacterial inactivation from aqueous solutions by activated MgO nanoparticles

ORCID Icon, , &
Pages 371-387 | Received 26 Mar 2024, Accepted 29 Jun 2024, Published online: 09 Jul 2024

References

  • Al-Rimawi, N. L., Al-Jabari, M. H., Sulaiman, S. M., Nazal, M. K., & Idrees, A. S. (2022). Pencil graphite synergistic improvement of zero-valent iron composite for the removal of diclofenac sodium in aqueous solutions: Kinetics and comparative study. Advanced Powder Technology, 33(6), 103610. doi:10.1016/j.apt.2022.103610
  • Afshin, S., Rashtbari, Y., Shirmardi, M., Vosoughi, M., & Hamzehzadeh, A. (2019). Adsorption of Basic Violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: Kinetics and isotherms studies. Desalination and Water Treatment, 161, 365–375. doi:10.5004/dwt.2019.24265
  • Afsin, B., & Macit, M. (1998). Weakly chemisorbed ammonia species at a Cu (110) surface. Phys. Low-Dimens. Struct, 3-4, 191–198.
  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77(1), 16–23. doi:10.1016/j.dyepig.2007.03.001
  • Al-Jabari, M. H., Sulaiman, S., Ali, S., Barakat, R., Mubarak, A., & Khan, S. A. (2019). Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. Journal of Molecular Liquids, 291, 111249. doi:10.1016/j.molliq
  • Al-Jabari, M., Imtiaz, K., Sulaiman, S., Alawi, I., & Shilo, J. (2018). Synthesis, characterization, kinetic and thermodynamic investigation of silica nanoparticles and their application in Mefenamic acid removal from aqueous solution. Desalination and Water Treatment, 129, 160–167. doi:10.5004/dwt.2018.23083
  • Banerjee, S., & Chattopadhyaya, M. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural byproduct. Arabian Journal of Chemistry, 10, S1629–S1638. doi:10.1016/j.arabjc.2013.06.005
  • Cai, Y., Li, C., Wu, D., Wang, W., Tan, F., Wang, X., … Qiao, X. (2017). Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chemical Engineering Journal, 312, 158–166. doi:10.1016/j.cej.2016.11.134
  • Chen, Y., He, M., Wang, C., & Wei, Y. (2014). A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb (II), Cu (II) and Cr (III) ions from aqueous solutions. Journal of Materials Chemistry A, 2(27), 10444–10453. doi:10.1039/c4ta01512f
  • Choe, J. K., Bergquist, A. M., Jeong, S., Guest, J. S., Werth, C. J., & Strathmann, T. J. (2015). Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. Water Research, 80, 267–280. doi:10.1016/j.watres.2015.05.007
  • Dhal, J. P., Sethi, M., Mishra, B. G., & Hota, G. (2015). MgO nanomaterials with different morphologies and their sorption capacity for removal of toxic dyes. Materials Letters, 141, 267–271. doi:10.1016/j.matlet.2014.10.055
  • Fominykh, K., Feckl, J. M., Sicklinger, J., Döblinger, M., Böcklein, S., Ziegler, J., … Bein, T. (2014). Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Advanced Functional Materials, 24(21), 3123–3129. doi:10.1002/adfm.201303600
  • Guangyu, Y., & Thiruvenkatachari, V. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37, 4486–4496.
  • Hu, D., & Wang, L. (2016). Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibriumand thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 64, 227–234. doi:10.1016/j.jtice.2016.04.028
  • Huang, M. R., Lu, H. J., & Li, X. G. (2012). Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. Journal of Materials Chemistry, 22(34), 17685–17699. doi:10.1039/c2jm32361c
  • Jin, T., & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13(12), 6877–6885. doi:10.1007/s11051-011-0595-5
  • Jin, Z., Jia, Y., Zhang, K., Kong, L., Sun, B., Shen, W., … Liu, J. (2016). Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. Journal of Alloys and Compounds, 675, 292–300. doi:10.1016/j.jallcom.2016.03.118
  • Kang, T., Park, Y., Choi, K., Lee, J. S., & Yi, J. (2004). Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. Journal of Materials Chemistry, 14(6), 1043–1049. doi:10.1039/b315829b
  • Krishnamoorthy, K., Manivannan, G., Kim, S. J., Jeyasubramanian, K., & Premanathan, M. (2012). Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. Journal of Nanoparticle Research, 14(9), 1063. doi:10.1007/s11051-012-1063-6
  • Liang, Y., Zhang, Y., Wang, Y., Zhang, H., & Liu, J. (2015). High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres. Journal of Hazardous Materials, 287, 373–383. doi:10.1016/j.jhazmat.2015.01.057
  • Mahmoud, H. R., Ibrahim, S. M., & El-Molla, S. A. (2016). Textile dye removal from aqueous solutions using cheap MgO nanomaterials: Adsorption kinetics, isotherm studies and thermodynamics. Advanced Powder Technology, 27(1), 223–231. doi:10.1016/j.apt.2015.12.006
  • Mbamba, C. K., Batstone, D. J., Flores-Alsina, X., & Tait, S. (2015). A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Research, 68, 342–353. doi:10.1016/j.watres.2014.10.011
  • Mittal, A., Kurup, L., & Gupta, V. K. (2005). Use of waste materials-bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. Journal of Hazardous Materials, 117(2-3), 171–178. doi:10.1016/j.jhazmat.2004.09.016
  • Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2–3), 806–812. doi:10.1016/j.jhazmat.2009.02.097
  • Nassar, M. Y., & Abdallah, S. (2016). Facile controllable hydrothermal route for porous CoMn2O4 nanostructure: Synthesis, characterization, and textile dye removal from aqueous media. RSC Advances, 6(87), 84050–84067. doi:10.1039/C6RA12424K
  • Nassar, M. Y., & Khatab, M. (2016). Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Advances, 6(83), 79688–79705. doi:10.1039/C6RA12852A
  • Pavan, F. A., Dias, S. L. P., Lima, E. C., & Benvenutti, E. V. (2008). Removal of Congo red fromaqueous solution by anilinepropylsilica xerogel. Dyes and Pigments, 76(1), 64–69. doi:10.1016/j.dyepig.2006.08.027
  • Purwajanti, S., Zhou, L., Ahmad, N. Y., Zhang, J., Zhang, H., Huang, X., & Yu, C. (2015). Synthesis of magnesium oxide hierarchical microspheres: A dual-functional material for water remediation. ACS Applied Materials & Interfaces, 7(38), 21278–21286. doi:10.1021/acsami.5b05553
  • Radnia, H., Ghoreyshi, A. A., Younesi, H., & Najafpour, G. D. (2012). Adsorption of Fe (II) ions from aqueous phase by chitosan adsorbent: Equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment, 50(1-3), 348–359. doi:10.1080/19443994.2012.720112
  • Salem, A.-N. M., Ahmed, M. A., & El-Shahat, M. F. (2016). Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. Journal of Molecular Liquids, 219, 780–788. doi:10.1016/j.molliq.2016.03.084
  • Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., Sawaki, T., … Shimizu, M. (2000). Antibacterial characteristics of magnesium oxide powder. World Journal of Microbiology and Biotechnology, 16(2), 187–194. doi:10.1023/A:1008916209784
  • Shahid, S., Ejaz, A., Javed, M., Mansoor, S., Iqbal, S., Elkaeed, E. B., … Nazim Sarwar, M. (2022). The anti-inflammatory and free radical scavenging activities of bio-inspired nano magnesium oxide. Frontiers in Materials, 9, 875163. doi:10.3389/fmats.2022.875163
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310. doi:10.1038/nature06599
  • Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. doi:10.1021/la0202374
  • Sulaiman, S., & Al-Jabari, M. (2021). Enhanced adsorptive removal of diclofenac sodium from aqueous solution by bentonite supported nanoscale zero-valent iron. Arab Journal of Basic and Applied Sciences, 28(1), 51–63. doi:10.1080/25765299.2021.1878655
  • Sulaiman, S., & Shahwan, T. (2017). Mefenamic acid stability and removal from wastewater using bentonite-supported nanoscale zero-valent iron and activated charcoal. Desalination and Water Treatment, 97, 175–183. doi:10.5004/dwt.2017.21633
  • Sulaiman, S., Khamis, M., Nir, S., Lelario, F., Scrano, L., Bufo, S. A., & Karaman, R. (2015). Stability and removal of spironolactone from wastewater. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(11), 1127–1135. doi:10.1080/10934529.2015.1047668
  • Sulaiman, S., Scrano, L., Khamis, M., Nir, S., Bufo, S. A., & Karaman, R. (2016). Diazepam stability in wastewater and removal by advanced membranes technology, activated carbon and micelle- bentonite complex. Desalination and Water Treatment, 57(7), 3098–3106. doi:10.1080/19443994.2014.981225
  • Sulaimana, S., Khamis, M., Nir, S., Lelario, F., Scrano, L., Bufo, S. A., & Karaman, R. (2014). Stability and removal of dexamethasone sodium phosphate from wastewater using different techniques. Environmental Technology, 35(13–16), 1945–1955. doi:10.1080/09593330.2014.888097
  • Tang, Z. X., & Lv, B. F. (2014). MgO nanoparticles as antibacterial agent: Preparation and activity. Brazilian Journal of Chemical Engineering, 31(3), 591–601. doi:10.1590/0104-6632.20140313s00002813
  • Thilagan, J., Gopalakrishnan, S., & Kannadasan, T. (2013). A comparative study on adsorption of copper (ii) ions in aqueous solution by; (a) chitosan blended with cellulose and cross linked by formaldehyde,(b) chitosan immobilised on red soil,(c) chitosan reinforced by banana stem fibre. International Journal of Applied Engineering & Technology, 3, 35–60.
  • Venieri, D., Fraggedaki, A., Kostadima, M., Chatzisymeon, E., Binas, V., Zachopoulos, A., … Mantzavinos, D. (2014). Solar light and metal-doped TiO2 to eliminate water transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Applied Catalysis B: Environment and Energy, 154, 93–101.
  • Venkatesha, T. G., Viswanatha, R., Arthoba Nayaka, Y., & Chethana, B. K. (2012). Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chemical Engineering Journal and the Biochemical Engineering Journal, 198–199, 1–10. doi:10.1016/j.cej.2012.05.071
  • Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153(1-2), 22–27. doi:10.1016/j.jhazmat.2007.08.011
  • Wetteland, C. L., Nguyen, N.-Y. T., & Liu, H. (2016). Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles. Acta Biomaterialia, 35, 341–356. doi:10.1016/j.actbio.2016.02.032
  • Wu, D., Wang, W., Ng, T. W., Huang, G., Xia, D., Yip, H. Y., … Wong, P. K. (2016). Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation. Journal of Materials Chemistry A, 4(3), 1052–1059. doi:10.1039/C5TA08044D
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal and the Biochemical Engineering Journal, 210, 26–32. doi:10.1016/j.cej.2012.08.052