143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Control strategy for renewable energy driven self-excited induction generator

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 417-428 | Received 30 Apr 2023, Accepted 17 Jul 2024, Published online: 26 Jul 2024

References

  • Al-Bahrani, A. H., & Malik, N. H. (1993). Voltage control of parallel operated self excited induction generators. IEEE Transactions on Energy Conversion, 8(2), 236–242. doi:10.1109/60.222710
  • Al-Manfi, A., Mohamed, W. A., & Elsalhin, E. F. (2022) Voltage control of stand-alone single phase self excited induction generator for variable speed wind turbine using Bang Bang-PWM controller. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). pp. 749–754, doi:10.1109/MI-STA54861.2022.9837503
  • Badrudeen, T. U., Ariyo, F. K., & Nwulu, N. (2024). Voltage stability improvement and power losses reduction through multiple grid contingency supports. Energy Exploration & Exploitation, 42(4). doi: 10.1177/01445987231218292
  • Badrudeen, T. U., Ariyo, F. K., Gbadamosi, S. L., & Nwulu, N. I. (2022b). A novel classification of the 330 kV Nigerian power network using a new voltage stability pointer. Energies, 15(19), 7247. (2022b) doi:10.3390/en15197247
  • Badrudeen, T. U., Ariyo, F. K., Salau, A. O., & Braide, S. L. (2022a). Analysis of a new voltage stability pointer for line contingency ranking in a power network. Bulletin of Electrical Engineering and Informatics, 11(6), 3033–3041. doi:10.11591/eei.v11i6.4266
  • Badrudeen, T. U., Ayinde, T. O., Ariyo, F. K., & Ogunnigbo, C. O. (2021). Performance evaluation of a frequency controlled three phase self-excited induction generator using artificial neural network. 2nd International Conference on Engineering and Environmental Sciences (pp. 39–47).
  • Badrudeen, T. U., Nwulu, N. I., & Gbadamosi, S. L. (2023). Neural network based approach for steady-state stability assessment of power systems. Sustainability, 15(2), 1667. doi:10.3390/su15021667
  • Belfedal, C., Gherbi, S., Sedraoui, M., Moreau, S., Champenois, G., Allaoui, T., & Denaï, M. A. (2010). Robust control of doubly fed induction generator for stand-alone applications. Electric Power Systems Research, 80(2), 230–239. doi:10.1016/j.epsr.2009.09.002
  • Bonert, R., & Hoops, G. (1990). Stand alone induction generator with terminal impedance controller and no turbine controls. IEEE Transactions on Energy Conversion, 5(1), 28–31. doi:10.1109/60.50808
  • Borja, M., Lescano, S., Luyo, J. E., & Tito, U. Y. (2021). MPPT of three-phase self-excited induction generator during electric power generation from variable power sources. 2021 1st International Conference on Power Electronics and Energy (ICPEE) (pp. 1–6), doi:10.1109/ICPEE50452.2021.9358538
  • Bouyahia, O., Betin, F., & Yazidi, A. (2022). Optimal sliding mode control of a symmetrical six-phase induction generator for wind turbines. IEEE Transactions on Industry Applications, 58(6), 7308–7317. doi:10.1109/TIA.2022.3195971
  • Cai, J., Shi, J., Guo, J., & Guo, K. (2021). Sizing optimization of wind-hydro combination system based on frequency division. 2021 3rd Asia Energy and Electrical Engineering Symposium (pp. 391–395). doi:10.1109/AEEES51875.2021.9403051
  • Chermiti, D., & Khedher, A. (2020). A wind-water pump driven by a self excited induction generator installed in stand-alone. 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 824–829), doi:10.1109/SSD49366.2020.9364215
  • Chilipi, R., Sumaiti, A. A., & Singh, B. (2020) Control of self-excited induction generator-based micro-hydro power generation system feeding single-phase and three-phase loads. 2020 IEEE Industry Applications Society Annual Meeting (pp. 1–8). doi:10.1109/IAS44978.2020.9334806
  • Esmaeel, M. (2020). Steady state analysis of a wind energy driven self excited induction generator (SEIG). 2020 8th International Conference on Smart Grid (icSmartGrid) (pp. 101–108). doi:10.1109/icSmartGrid49881.2020.9144953
  • Esquivel-Sancho, L., Pereira-Arroyo, R., & Muñoz-Arias, M. (2021). Voltage regulation for a self-excited induction generator. 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 1336–1341), doi:10.1109/CDC45484.2021.9682864
  • Fenrick, S. A., & Getachew, L. (2012). Cost and reliability comparisons of underground and overhead power lines. Utilities Policy, 20(1), 31–37. 2012doi:10.1016/j.jup.2011.10.002
  • Gao, S., Zhao, H., Gui, Y., Zhou, D., & Blaabjerg, F. (2021). An improved direct power control for doubly fed induction generator. IEEE Transactions on Power Electronics, 36(4), 4672–4685. doi:10.1109/TPEL.2020.3024620
  • He, Y., Guo, S., Dong, P., Zhang, Y., Huang, J., & Zhou, J. (2023). A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 183, 113476. doi:10.1016/j.rser.2023.113476
  • Hermann, D. T., Donatien, N., Konchou Franck Armel, T., & René, T. (2022). Techno-economic and environmental feasibility study with demand-side management of photovoltaic/wind/hydroelectricity/battery/diesel: A case study in Sub-Saharan Africa. Energy Conversion and Management, 258, 115494. doi:10.1016/j.enconman.2022.115494
  • Hossain, M. A., & Bodson, M. (2022). Control of a PMSM using the rotor-side converter of a doubly fed induction generator for hybrid-electric propulsion. IEEE Transactions on Control Systems Technology, 30(4), 1758–1765. doi:10.1109/TCST.2021.3113885
  • Huang, J., Yang, Z., Yu, J., Xiong, L., & Xu, Y. (2022). Frequency dynamics-contrained parameter design for fast frequency controller of wind turbine. IEEE Transactions on Sustainable Energy, 13(1), 31–43. Jan2022 doi:10.1109/TSTE.2021.3102611
  • Hussien, M. G., Liu, Y., Xu, W., Junejo, A. K., & Allam, S. M. (2022). Improved MRAS rotor position observer based on control winding power factor for stand-alone brushless doubly-fed induction generators. IEEE Transactions on Energy Conversion, 37(1), 707–717. doi:10.1109/TEC.2021.3110776
  • Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complimentary of renewable energy sources: Concept, metric, application and future research directions. Solar Energy, 195(11), 703–724. doi:10.1016/j.solener.2019.11.087
  • Khan, M. F., Khan, M. R., & Iqbal, A. (2022). Effects of induction machine parameters on its performance as a standalone self excited induction generator. Energy Reports, 8, 2302–2313. doi:10.1016/j.egyr.2022.01.023
  • Marra, E. G., & Pomilio, J. A. (1999). Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications. IEEE Transactions on Industry Applications, 35(4), 877–883. doi:10.1109/28.777197
  • Mondal, P., Malakar, M., Tripathy, P., Krishnaswamy, S., & Saha, U. (2022). Robust observer design for sensorless voltage and frequency control of a doubly fed induction generator in standalone mode. IEEE Transactions on Energy Conversion, 37(2), 844–854. doi:10.1109/TEC.2021.3126779
  • Paliwal, S., Sinha, S. K., & Chauhan, Y. K. (2017). Performance optimization of self excited induction generator: A state of art. 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE) (pp. 416–420). doi:10.1109/RDCAPE.2017.8358307
  • Paliwal, S., Sinha, S. K., & Chauhan, Y. K. (2021). Frequency control of 5 kW self-excited induction generator using gravitational search algorithm and genetic algorithm. In AI and IOT in renewable energy. Singapore: Springer. doi:10.1007/978-981-1101-0_8
  • Saha, B., & Mahato, S. N. (2019). Power quality improvement of a self-excited induction generator using NFPI controller based hybrid STATCOM system. 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (pp. 1–4), doi:10.1109/INCOS45849.2019.8951424
  • Salau, A. O., Kanchana, K., Anoop, K. J., Markus, E. D., & Braide, S. L. (2024). Suppression of over voltage in SiC-based inverter fed induction motor. Australian Journal of Electrical and Electronics Engineering, 21(1), 11–28. doi:10.1080/1448837X.2023.2250132
  • Salau, A. O., Nweke, J. N., & Ogbuefi, U. C. (2021). Effective implementation of mitigation measures against voltage collapse in distribution power systems. Przeglad Elektrotechniczny, 97, 65–68. doi:10.15199/48.2021.10.13
  • Sangov, K., Chorshanbiev, S. R., Ismoilov, F. O., Balaev, M. A., & Vohidov, M. M. (2020). Three-phase self-excited induction generator for windmills analytical techniques and experimental results. 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE) (pp. 1–6). doi:10.1109/REEPE49198.2020.9059122
  • Sedky, J., Yassin, H. M., Hanafy, H. H., & Ismail, F. (2021). Voltage and frequency control of standalone wind-driven self-excited reluctance generator using switching capacitors. Journal of Electrical Systems and Information Technology, 8(6), 23. doi:10.1186/s43067-021-00030-1.
  • Singh, B., & Murthy, S. S. (2006). A steady state analysis on voltage and frequency control of self-excited induction generator in micro-hydro system. 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1–6). doi:10.1109/PEDES.2006.344278
  • Sombir, S., & Singh, M. (2020). Voltage and frequency control of self excited induction generator integrated with PV system. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society (pp. 4306–4311), doi:10.1109/IECON43393.2020.9254608
  • Suarez, E., & Bortolotto, G. (1999). Voltage-frequency control of a self-excited induction generator. IEEE Transactions on Energy Conversion, 14(3), 394–401. doi:10.1109/60.790888
  • The World Bank. (2017). The rural electrification project stage II.
  • United Nations. (2021). COP26: The Glasgow climate pact. UN Change Conference, Nov. 2021. UK in partnership with Italy.
  • Weldcherkos, T., Salau, A. O., & Ashagrie, A. (2021). Modeling and design of an automatic generation control for hydropower plants using neuro-fuzzy controller. Energy Reports, 7, 6626–6637. doi:10.1016/j.egyr.2021.09.143
  • Yarlagadda, V., Karthika, G. A., Ambati, G., & Kumar, C. S. (2022). Wind energy system using self excited induction generator with hybrid facts device for load voltage control. International Conference on Electrical and Electronics Engineering, 1, 77–91.
  • Yesgat, A. W., Salau, A. O., & Kassahun, H. E. (2022). Fuzzy based sliding mode control of vector controlled multiphase induction motor drive under load fluctuation. Journal of Electrical and Electronics Engineering, 15(2), 98–105.
  • Zhang, Y., & Jiang, T. (2022). Robust predictive rotor current control of a doubly fed induction generator under an unbalanced and distorted grid. IEEE Transactions on Energy Conversion, 37(1), 433–442. doi:10.1109/TEC.2021.3104410
  • Zhang, Y., Cheng, V., Mallapragada, D. S., Song, J., & He, G. (2022). A model adaptive clustering based time aggregation method for low-carbon energy system optimization. IEEE Transactions on Sustainable Energy, 14(1), 55–64. doi:10.1109/TSTE.2022.3199571