0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the qualitative behaviors of Volterra-Fredholm integro differential equations with multiple time-varying delays

ORCID Icon & ORCID Icon
Pages 440-453 | Received 19 Jun 2024, Accepted 28 Jul 2024, Published online: 06 Aug 2024

References

  • Amin, R., Ahmadian, A., Alreshidi, N. A., Gao, L., & Salimi, M. (2021). Existence and computational results to Volterra-Fredholm integro-differential equations involving delay term. Computational & Applied Mathematics, 40, 276.
  • Aslıyüce, S., & Öğrekçi, S. (2023). Ulam type stability for a class of second order nonlinear differential equations. Facta Universitatis. Series: Mathematics and Informatics, 38(2), 429–435.
  • Bensalem, A., Salim, A., Benchohra, M., & N’Guérékata, G. (2024). Approximate controllability and Ulam stability for second-order impulsive integro-differential evolution equations with state-dependent delay. International Journal of Differential Equations, 2024, 8567425. doi:10.1155/2024/8567425
  • Benzarouala, C., & Tunç, C. (2024). C. Hyers-Ulam-Rassias stability of fractional delay differential equations with Caputo derivative. Mathematical Methods in the Applied Sciences, 1–11. doi:10.1002/mma.10202
  • Bohner, M., Tunç, O., & Tunç, C. (2021). Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Computational & Applied Mathematics, 40, 214.
  • Burton, T. A. (2006). Stability by fixed point theory for functional differential equations. Dover Publications, Inc.
  • Burton, T. A. (2016). Existence and uniqueness results by progressive contractions for integro-differential equations. Nonlinear Dynamics and Systems Theory, 16(4), 366–371.
  • Burton, T. A. (2019). A note on existence and uniqueness for integral equations with sum of two operators: Progressive contractions. Fixed Point Theory, 20(1), 107–112. doi:10.24193/fpt-ro.2019.1.06
  • Castro, L. P., & Ramos, A. (2009). Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations. Banach Journal of Mathematical Analysis, 3(1), 36–43. doi:10.15352/bjma/1240336421
  • Castro, L. P., & Ramos, A. (2010). Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with delay. Integral Methods in Science and Engineering, 1, 85–94.
  • Castro, L. P., & Simões, A. M. (2017). Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of Hammerstein integral equations. In AIP Conference Proceedings (vol. 1798, p. 020036) doi:10.1063/1.4972628
  • Castro, L. P., & Simões, A. M. (2018). Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. Mathematical Methods in the Applied Sciences, 41(17), 7367–7383. doi:10.1002/mma.4857
  • Chauhan, H. V. S., Singh, B., Tunç, C., & Tunç, O. (2022). On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. RACSAM, 116, 101.
  • Ciplea, S. A., Lungu, N., Marian, D., & Rassias, T. M. (2022). On Hyers-Ulam-Rassias stability of a Volterra-Hammerstein functional integral equation. In Approximation and computation in science and engineering. Springer optimization and ıts applications (vol. 180, pp. 147–156). Springer. doi:10.1007/978-3-030-84122-5_9
  • Deep, A., Deepmala, & Tunç, C. (2020). On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab Journal of Basic and Applied Sciences. 27(1), 279–286. doi:10.1080/25765299.2020.1796199
  • Diaz, J. B., & Margolis, B. (1968). A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bulletin of the American Mathematical Society, 74(2), 305–309. doi:10.1090/S0002-9904-1968-11933-0
  • Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., & Nisar, K. S. (2023). Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order 1 < r < 2. International Journal of Nonlinear Sciences and Numerical Simulation, 24(5), 1947–1979. doi:10.1515/ijnsns-2021-0479
  • Eghbali, N., & Kalvandi, V. (2018). A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of differential equations y′(x)=F(x,y(x)).. Applied Mathematics E-Notes, 18, 34–42.
  • Graef, J. R., & Tunç, C. (2015). Continuability and boundedness of multi-delay functional integro-differential equations of the second order. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109(1), 169–173. doi:10.1007/s13398-014-0175-5
  • Graef, J. R., Tunç, C., Şengün, M., & Tunç, O. (2023). The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. Nonautonomous Dynamical Systems, 10(1), 20220169. doi:10.1515/msds-2022-0169
  • Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Control engineering. Birkhäuser Boston, Inc.
  • Ilea, V., & Otrocol, D. (2020). On the Burton method of progressive contractions for Volterra integral equations. Fixed Point Theory, 21(2), 585–594. doi:10.24193/fpt-ro.2020.2.41
  • Jung, S.-M. (2007). A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory and Applications, 2007(1), 57064. doi:10.1155/2007/57064
  • Jung, S.-M. (2010). A fixed point approach to the stability of differential equations y′=F(x,y).. Bulletin of the Malaysian Mathematical Sciences Society, 2(33), 47–56.
  • Jung, S.-M. (2011). Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis. Springer Optimization and Its Applications, 48. Springer.
  • Jung, S.-M., & Rezaei, H. (2015). A fixed point approach to the stability of linear differential equations. Bulletin of the Malaysian Mathematical Sciences Society, 38(2), 855–865. doi:10.1007/s40840-014-0053-5
  • Khan, H., Tunc, C., Chen, W., & Khan, A. (2018). Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. The Journal of Applied Analysis and Computation, 8(4), 1211–1226.
  • Kucche, K. D., & Shikhare, P. U. (2018a). Ulam-Hyers stability of integro-differential equations in Banach spaces via Pachpatte’s inequality. Asian-European Journal of Mathematics, 11, 1850062.
  • Kucche, K. D., & Shikhare, P. U. (2018b). Ulam stabilities via Pachpatte’s inequality for Volterra-Fredholm delay integro-differential equations in Banach spaces. Note di Matematica, 38(1), 67–82.
  • Ma, Y.-K., Johnson, M., Vijayakumar, V., Radhika, T., Shukla, A., & Nisar, K. S. (2023). A note on approximate controllability of second-order impulsive stochastic Volterra-Fredholm integro-differential system with infinite delay. Journal of King Saud University - Science, 35(4), 102637. doi:10.1016/j.jksus.2023.102637
  • Miah, B. A., Sen, M., Murugan, R., Sarkar, N., & Gupta, D. (2024). An investigation into the characteristics of VFIDEs with delay: Solvability criteria, Ulam–Hyers–Rassias and Ulam–Hyers stability. The Journal of Analysis, doi:10.1007/s41478-024-00767-8
  • Miahi, M., Mirzaee, F., & Khodaei, H. (2021). On convex-valued G-m-monomials with applications in stability theory. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(2), 76. doi:10.1007/s13398-021-01022-6
  • Öğrekçi, S., Başcı, Y., & Mısır, A. (2023). A fixed point method for stability of nonlinear Volterra integral equations in the sense of Ulam. Mathematical Methods in the Applied Sciences, 46(8), 8437–8444. doi:10.1002/mma.8988
  • Onitsuka, M. (2024). Ulam stability for third-order linear differential equations with variable coefficients. Mediterranean Journal of Mathematics, 21(1), 2. doi:10.1007/s00009-023-02543-7
  • Patel, R., Vijayakumar, V., Nieto, J. J., Jadon, S. S., & Shukla, A. (2023). A note on the existence and optimal control for mixed Volterra-Fredholm-type integro-differential dispersion system of third order. Asian Journal of Control, 25(3), 2113–2121. doi:10.1002/asjc.2860
  • Petruşel, A., Petruşel, G., & Yao, J.-C. (2019). Existence and stability results for a system of operator equations via fixed point theory for non-self orbital contractions. Journal of Fixed Point Theory and Applications, 21(3), 73. doi:10.1007/s11784-019-0711-1
  • Rassias, T. M. (1978). On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society, 72(2), 297–300. doi:10.2307/2042795
  • Selvam, A., Sabarinathan, S., Pinelas, S., & Suvitha, V. (2024). Existence and stability of Ulam-Hyers for neutral stochastic functional differential equations. Bulletin of the Iranian Mathematical Society, 50(1), 1.
  • Shukla, A., Sukavanam, N., & Pandey, D. N. (2015). Complete controllability of semi-linear stochastic system with delay. Rendiconti del Circolo Matematico di Palermo (1952 -), 64(2), 209–220. doi:10.1007/s12215-015-0191-0
  • Sweis, H., Abu Arqub, O., & Shawagfeh, N. (2023a). Fractional delay integro-differential equations of nonsingular kernels: Existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. International Journal of Modern Physics, 34(04), 2350052. doi:10.1142/S0129183123500523
  • Sweis, H., Abu Arqub, O., & Shawagfeh, N. (2023b). Hilfer fractional delay differential equations: Existence and uniqueness computational results and pointwise approximation utilizing the Shifted-Legendre Galerkin algorithm. Alexandria Engineering Journal, 81, 548–559. doi:10.1016/j.aej.2023.09.011
  • Sweis, H., Shawagfeh, N., & Abu Arqub, O. (2022). Fractional crossover delay differential equations of Mittag-Leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials. Results in Physics, 41, 105891. doi:10.1016/j.rinp.2022.105891
  • Sweis, H., Shawagfeh, N., & Abu Arqub, O. (2024). Existence, uniqueness, and galerkin shifted Legendre’s approximation of time delays integro-differential models by adapting the Hilfer fractional attitude. Heliyon, 10(4), e25903. doi:10.1016/j.heliyon.2024.e25903
  • Tunç, C., & Tunç, O. (2019). A note on the qualitative analysis of Volterra integro-differential equations. Journal of Taibah University for Science, 13(1), 490–496. doi:10.1080/16583655.2019.1596629
  • Tunç, O., & Tunç, C. (2023). Ulam stabilities of nonlinear iterative integro-differential equations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 117(3), 118. doi:10.1007/s13398-023-01450-6
  • Tunç, O., & Tunç, C. (2024). On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 118(3), 83. doi:10.1007/s13398-024-01579-y
  • Tunç, O., Tunç, C., & Yao, J.-C. (2024). Global existence and uniqueness of solutions of integral equations with multiple variable delays and integro-differential equations. Progressive Contractions. Mathematics, 12(2), 171. doi:10.3390/math1202017
  • Tunç, O., Tunç, C., Petruşel, G., & Yao, J.-C. (2024). On the Ulam stabilities of nonlinear integral equations and integro-differential equations. Mathematical Methods in the Applied Sciences, 47 (6), 4014–4028.doi:10.1002/mma.9800
  • Ulam, S. M. (1964). Problems in modern mathematics, Science Editions. John Wiley & Sons, Inc.
  • Volterra, V. (1959). Theory of functionals and of integral and integro-differential equations. With a preface by G. C. Evans, a biography of Vito Volterra and a bibliography of his published works by E. Whittaker. Dover Publications, Inc.
  • Xu, C., & Farman, M. (2023). Qualitative and Ulam-Hyres stability analysis of fractional order cancer-immune model. Chaos, Solitons & Fractals, 177, 114277. doi:10.1016/j.chaos.2023.114277