1,050
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evolution of carbon diffusion layer to oxidation film during cathodic plasma electrolysis on steel

ORCID Icon, , , , & ORCID Icon
Pages 1-8 | Received 03 Nov 2019, Accepted 29 May 2020, Published online: 19 Jun 2020

References

  • Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7
  • Rumbach P, Bartels DM, Sankaran RM, et al. The solvation of electrons by an atmospheric-pressure plasma. Nat Commun. 2015;6:7248. doi: 10.1038/ncomms8248
  • Liu R, Wang B, Wu J, et al. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel. Appl Surf Sci. 2014;321:348–352. doi: 10.1016/j.apsusc.2014.10.026
  • Wu J, Xue W, Jin X, et al. Preparation and characterization of diamond-like carbon/oxides composite film on carbon steel by cathodic plasma electrolysis. Appl Phys Lett. 2013;103:031905. doi: 10.1063/1.4813830
  • Liu C, Zhao Y, Chen Y, et al. Surface modification of magnesium alloy via cathodic plasma electrolysis and its influence on corrosion resistance and cytocompatibility. Mater Lett. 2014;132:15–18. doi: 10.1016/j.matlet.2014.06.019
  • Çavuşlu F, Usta M. Kinetics and mechanical study of plasma electrolytic carburizing for pure iron. Appl Surf Sci. 2011;257:4014–4020. doi: 10.1016/j.apsusc.2010.11.167
  • Wang L, Jiang X. Plasma-induced reduction of chromium (VI) in an aqueous solution. Environ Sci Technol. 2008;42:8492–8497. doi: 10.1021/es8017286
  • Gao J, Chen L, He YY, et al. Degradation of imidazolium-based ionic liquids in aqueous solution using plasma electrolysis. J Hazard Mater. 2014;265:261–270. doi: 10.1016/j.jhazmat.2013.11.060
  • Wu J, Wang B, Zhang Y, et al. Enhanced wear and corrosion resistance of plasma electrolytic carburized layer on T8 carbon steel. Mater Chem Phys. 2016;171:50–56. doi: 10.1016/j.matchemphys.2015.09.047
  • Li X, Han Y. Porous nanocrystalline Ti(CxN1-x) thick films by plasma electrolytic carbonitriding. Electrochem Commun. 2006;8:267–272. doi: 10.1016/j.elecom.2005.11.017
  • Wu J, Zhang Y, Liu R, et al. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum. Appl Surf Sci. 2015;347:673–678. doi: 10.1016/j.apsusc.2015.04.171
  • Lin N, Xie R, Zhou P, et al. Review on improving wear and corrosion resistance of steels via plasma electrolytic saturation technology. Surf Rev Lett. 2016;23:1630002. doi: 10.1142/S0218625X16300021
  • Parfenov EV, Yerokhin A, Nevyantseva RR, et al. Towards smart electrolytic plasma technologies: an overview of methodological approaches to process modeling. Surf Coat Technol. 2015;269:2–22. doi: 10.1016/j.surfcoat.2015.02.019
  • Jin X, Wang B, Xue W, et al. Characterization of wear resistant coatings on 304 stainless steel fabricated by cathodic plasma electrolytic oxidation. Surf Coat Technol. 2013;236:22–28. doi: 10.1016/j.surfcoat.2013.04.056
  • Wu J, Lu P, Dong L, et al. Combination of plasma electrolytic oxidation and pulsed laser deposition for preparation of corrosion-resisting composite film on zirconium alloys. Mater Lett. 2020;262:127080. doi: 10.1016/j.matlet.2019.127080
  • Wu J, He X, Li G, et al. Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution. Appl Phys Lett. 2019;114:043903. doi: 10.1063/1.5083686
  • Jauhari I, Rozali S, Masdek N, et al. Surface properties and activation energy analysis for superplastic carburizing of duplex stainless steel. Mater Sci Eng, A. 2007;466:230–234. doi: 10.1016/j.msea.2007.02.082
  • Moelans N, Blanpain B, Wollants P. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. Acta Mater. 2007;55:2173–2182. doi: 10.1016/j.actamat.2006.11.018
  • Wu J, Xue W, Wang B, et al. Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis. Surf Coat Technol. 2014;245:9–15. doi: 10.1016/j.surfcoat.2014.02.024
  • Xu Y, Roques J, Domain C, et al. Carbon diffusion in bulk hcp zirconium: a multi-scale approach. J Nucl Mater. 2016;473:61–67. doi: 10.1016/j.jnucmat.2016.02.010
  • Yang J, Park J, Kang J, et al. First-principles multiple-barrier diffusion theory: the case study of interstitial diffusion in CdTe. Phys Rev B. 2015;91:075202. doi: 10.1103/PhysRevB.91.075202
  • Jiménez H, Staia MH, Puchi ES. Mathematical modeling of a carburizing process of a SAE 8620H steel. Surf Coat Technol. 1999;358:120–121.
  • Yan Z, Deng L, Chen L. Cathodic plasma electrolysis in 1-propanol solutions for preparation of submicron diamond particles. Electrochim Acta. 2013;105:612–617. doi: 10.1016/j.electacta.2013.05.026
  • Wang K, Liu G, Li Y, et al. Non-intrusive characterization of sand particles dispersed in gas-water bubbly flow using straight and bent pipes with vibration sensing. Powder Technol. 2019;344:598–610. doi: 10.1016/j.powtec.2018.12.053
  • Wang K, Liu G, Li Y, et al. Identification and characterization of solids in sand-water two-phase flows via vibration multi-sensor approaches. Adv Powder Technol. 2019;30:2240–2250. doi: 10.1016/j.apt.2019.07.004
  • Griem HR. Plasma spectroscopy. New York (NY) McGraw-Hill Book; 1964.
  • http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  • Hussein RO, Nie X, Northwood DO, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D: Appl Phys. 2010;43:105203. doi: 10.1088/0022-3727/43/10/105203
  • Bagryansky PA, Shalashov AG, Gospodchikov ED, et al. Threefold increase of the bulk electron temperature of plasma discharges in a magnetic mirror device. Phys Rev Lett. 2015;114:205001. doi: 10.1103/PhysRevLett.114.205001