3,421
Views
0
CrossRef citations to date
0
Altmetric
Applied Phycology for Sustainable Development

New temperate seaweed targets for mitigation of ruminant methane emissions: an in vitro assessment

, , , , &
Pages 274-284 | Received 18 Sep 2021, Accepted 15 Feb 2022, Published online: 04 May 2022

References

  • Anderson, P. D., Dalir-Naghadeh, B., & Parkinson, T. J. 2007. Iodine deficiency in dairy cattle. Proceedings of the New Zealand Society of Animal Production. Pages 248–254. New Zealand Society of Animal Production, Wanaka.
  • Anderson, M., Gorley, R. N., & Clarke, K. 2008. PERMANOVA+ for primer: Guide to software and statistical methods.
  • Angell, A. R., Mata, L., de Nys, R., & Paul, N. A. (2016). The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, 28, 511–524.
  • Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 62, 869–877.
  • Attwood, G. T., Klieve, A. V., Ouwerkerk, D., & Patel, B. K. (1998). Ammonia-hyperproducing bacteria from New Zealand ruminants. Applied and Environmental Microbiology, 64, 1796–1804.
  • Basarab, J. A., Beauchemin, K. A., Baron, V. S., Ominski, K. H., Guan, L. L., Miller, S. P., & Crowley, J. J. (2013). Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. animal, 7, 303–315.
  • Bayat, A. R., Tapio, I., Vilkki, J., Shingfield, K. J., & Leskinen, H. (2018). Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. Journal of Dairy Science, 101, 1136–1151.
  • Beauchemin, K. A., Kreuzer, M., O’Mara, F., & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27.
  • Bhatta, R., & Enishi, O. (2007). Measurement of Methane Production from Ruminants. Asian-Australasian Journal of Animal Sciences, 20, 1305–1318.
  • Buddle, B. M., Denis, M., Attwood, G. T., Altermann, E., Janssen, P. H., Ronimus, R. S., … Neil Wedlock, D. (2011). Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Veterinary Journal, 188, 11–17.
  • Chagas, J. C., Ramin, M., & Krizsan, S. J. (2019). In vitro evaluation of different dietary methane mitigation strategies. Animals, 9, 1120.
  • Choi, Y. Y., Shin, N. H., Lee, S. J., Lee, Y. J., Kim, H. S., Eom, J. S., … Lee, S. S. (2021). In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield. Journal of Applied Phycology, 33, 1253–1262.
  • Clark, H., Kelliher, F., & Pinares-Patino, C. (2010). Reducing CH 4 emissions from grazing ruminants in New Zealand: Challenges and opportunities. Asian-Australasian Journal of Animal Sciences, 24, 295–302.
  • ClimateWatch. 2020. Available at: https://www.climatewatchdata.org/sectors/agriculture?contextBy=indicator#drivers-of-emissions. Wasington, DC, World Resources Institute.
  • Dubois, B., Tomkins, N., Kinley, R., Bai, M., Seymour, S., Paul, N., & de Nys, R. (2013). Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences, 04, 34–43.
  • Durmic, Z., Moate, P. J., Eckard, R., Revell, D. K., Williams, R., & Vercoe, P. E. (2014). In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. Journal of the Science of Food and Agriculture, 94, 1191–1196.
  • Freshwater, D. W., & Rueness, J. (1994). Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia, 33, 187–194.
  • Grainger, C., Auldist, M. J., Clarke, T., Beauchemin, K. A., McGinn, S. M., Hannah, M. C., … Lowe, L. B. (2008). Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grain. Journal of Dairy Science, 91, 1159–1165.
  • Haisan, J., Sun, Y., Guan, L., Beauchemin, K. A., Iwaasa, A., Duval, S., … Oba, M. (2017). The effects of feeding 3-nitrooxypropanol at two doses on milk production, rumen fermentation, plasma metabolites, nutrient digestibility, and methane emissions in lactating Holstein cows. Animal Production Science, 57, 282–289.
  • Heesch, S., Broom, J. E. S., Neill, K. F., Farr, T. J., Dalen, J. L., & Nelson, W. A. (2009). Ulva, Umbraulva and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. European Journal of Phycology, 44, 143–154.
  • Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., … Tricarico, J. M. (2013). SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1. Journal of Animal Science, 91, 5045–5069.
  • Hristov, A. N., Oh, J., Giallongo, F., Frederick, T. W., Harper, M. T., Weeks, H. L., and Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciencesof the United States of America, 112, 10663–10668.
  • Hungate, R. E. (1967). Hydrogen as an intermediate in the rumen fermentation. Archiv Für Mikrobiologie, 59, 158–164.
  • Janssen, P. H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160, 1–22.
  • Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
  • Key, N., & Tallard, G. (2012). Mitigating methane emissions from livestock: A global analysis of sectoral policies. Climatic Change, 112, 387–414.
  • Kim, M., Kim, S., & Nelson, W. (2010). Symphyocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbc L sequences. Botanica Marina, 53, 233–241.
  • Kinley, R. D., de Nys, R., Vucko, M. J., Machado, L., & Tomkins, N. W. (2016). The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Animal Production Science, 56, 282–289.
  • Kinley, R., Martinez-Fernandez, G., Matthews, M., de Nys, R., Magnusson, M., & Tomkins, N. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836.
  • Kladi, M., Vagias, C., & Roussis, V. (2004). Volatile halogenated metabolites from marine red algae. Phytochemistry Reviews, 3, 337–366.
  • Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97, :3231–3261.
  • Kobayashi, Y. (2010). Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 23, 410–416.
  • Kumari, S., Fagodiya, R. K., Hiloidhari, M., Dahiya, R. P., & Kumar, A. (2020). Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. Science of The Total Environment, 709, 136135.
  • Lawton, R. J., Sutherland, J. E., Glasson, C. R. K., & Magnusson, M. E. (2021). Selection of temperate Ulva species and cultivars for land-based cultivation and biomass applications. Algal Research, 56, 102320.
  • Leng, R. A. (2014). Interactions between microbial consortia in biofilms: A paradigm shift in rumen microbial ecology and enteric methane mitigation. Animal Production Science, 54, 519–543.
  • Li, X., Norman, H. C., Kinley, R. D., Laurence, M., Wilmot, M., Bender, H., … Tomkins, N. (2016). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58, 681–688.
  • Menke, K. H., & Close, W. (1986). Selected topics in animal nutrition (pp. A.57). Feldafing, Germany: Deutsche Stifung fuer Internationale Entwicklung.
  • Moss, A. R., Jouany, J.-P., & Newbold, J. (2000). Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie, 49, 231–253.
  • Mould, F., Morgan, R., Kliem, K., & Krystallidou, E. (2005). A review and simplification of the in vitro incubation medium. Animal Feed Science and Technology, 123, 155–172.
  • Muetzel, S., Hunt, C., & Tavendale, M. H. (2014). A fully automated incubation system for the measurement of gas production and gas composition. Animal Feed Science and Technology, 196, 1–11.
  • Mitsumori, M., Shinkai, T., Takenaka, A., Enishi, O., Higuchi, K., Kobayashi, Y., … McSweeney, C. S. (2012). Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition, 108, 482–491.
  • Myhre, G., Shindell, D., Bréon, F., Collins, W., Fuglestvedt, J., Huang, J., … Mendoza, B. 2013. Anthropogenic and natural radiative forcing. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 659–740. Cambridge: Cambridge University Press.
  • Machado, L., Magnusson, M., Paul, N. A., de Nys, R., Tomkins, N., & Campbell, D. A. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLOS ONE, 9, e85289.
  • Magnusson, M., Mata, L., Wang, N., Zhao, J., de Nys, R., & Paul, N. (2015). Manipulating antioxidant content in macroalgae in intensive land-based cultivation systems for functional food applications. Algal Research, 8, 153–160.
  • Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. On in Vitro Fermentation and Methane Production. Journal of Applied Phycology, 28, 1443–1452.
  • Maia, M. R. G., Fonseca, A. J. M., Oliveira, H. M., Mendonça, C., & Cabrita, A. R. J. (2016). The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific Reports, 6, 32321.
  • Martinez-Fernandez, G., Denman, S. E., Yang, C., Cheung, J., Mitsumori, M., & McSweeney, C. S. (2016). Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. In Frontiers in Microbiology, 7, 1122.
  • Machado, L., Magnusson, M., Paul, N., Kinley, R., Nys, R., & Tomkins, N. (2016a). Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology, 28, 3117–3126.
  • Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016b). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28, 1443–1452.
  • Martinez-Fernandez, G., Denman, S. E., Cheung, J., & McSweeney, C. S. (2017). Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. In Frontiers in Microbiology, 8, 1871.
  • Machado, L., Tomkins, N., Magnusson, M., Midgley, D. J., de Nys, R., & Rosewarne, C. P. (2018). In vitro response of rumen microbiota to the antimethanogenic red Macroalga Asparagopsis taxiformis. Microbial Ecology, 75, 811–818.
  • Melgar, A., Harper, M., Oh, J., Giallongo, F., Young, M., Ott, T., … Hristov, A. (2020). Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. Journal of Dairy Science, 103, 410–432.
  • Ministry for the Environment. (2020). New Zealand’s Greenhouse Gas Inventory (pp. 1990–2018). Wellington, New Zealand: Author.
  • National Academies of Sciences, Engineering, and Medicine. (2016). Nutrient requirements of beef cattle: Eighth revised edition. Washington, DC: The National Academies Press.
  • Nelson, W. A. (2020). New Zealand seaweeds: An illustrated guide. Wellington, New Zealand: Te Papa Press.
  • Nelson, W. A., Neill, K., D’Archino, R., & Rolfe, J. R. (2019). Conservation status of New Zealand macroalgae, 2019 (pp. 1988514975). Wellington, New Zealand: PublishingTeam, Department of Conservation.
  • Olivier, J. G., Schure, K., & Peters, J. 2017. Trends in global CO2 and total greenhouse gas emissions.
  • Paulíková, I., Kovac, G., Jozef, B., Paulík, Š., Seidel, H., & Oskar, N. (2002). Iodine toxicity in ruminants. Veterinarni Medicina, 47, 343–350.
  • Prather, M. J., Holmes, C. D., & Hsu, J. (2012). Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. In Geophysical Research Letters, 39, L09803.
  • Roque, B. M., Salwen, J. K., Kinley, R., & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132–138.
  • Roque, B. M., Venegas, M., Kinley, R. D., de Nys, R., Duarte, T. L., Yang, X., & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS ONE, 16, e0247820.
  • Russell, J. B., O’Connor, J. D., Fox, D. G., Van Soest, P. J., & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal Fermentation. Journal of Animal Science, 70, 3551–3561.
  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., … Zhuang, Q. (2020). The Global Methane Budget 2000–2017. Earth System Science Data, 12, 1561–1623.
  • Stefenoni, H., Räisänen, S., Cueva, S., Wasson, D. E., Lage, C., Melgar, A., … Vecchiarelli, B. (2021). Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science, 104, 4157–4173.
  • Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker, N., Attwood, G. T., & Sivakumaran, S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa. And Effects of Extractable Condensed Tannin Fractions on Methanogenesis. Animal Feed Science and Technology, 123–124, 403–419.
  • Tomkins, N. W., Colegate, S. M., & Hunter, R. A. (2009). A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Animal Production Science, 49, 1053–1058.
  • Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology, 6, 37.
  • Ungerfeld, E. M. (2018). Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Frontiers in Veterinary Science, 5, 113.
  • Ungerfeld, E. M. (2020). Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology, 11, 589.
  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. 21 October 2015. A/RES/70/1.
  • Urrutia, N., Bomberger, R., Matamoros, C., & Harvatine, K. (2019). Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. Journal of Dairy Science, 102, 5172–5181.
  • Wedlock, D. N., Pedersen, G., Denis, M., Dey, D., Janssen, P. H., & Buddle, B. M. (2010). Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. New Zealand Veterinary Journal, 58, 29–36.
  • Weiss, W. P. (2005). Mineral tolerance of animals. national research council. Washington, DC: National Academies Press.
  • Williams, Y. J., Popovski, S., Rea, S. M., Skillman, L. C., Toovey, A. F., Northwood, K. S., & Wright, A.-D. G. (2009). A vaccine against rumen methanogens can alter the composition of archaeal populations. Applied and Environmental Microbiology, 75, 1860–1866.
  • Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D. A., & Barrow, C. J. (2006). A simple 96-Well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology, 18, 445–450.
  • Zuccarello, G., & Lokhorst, G. (2005). Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbc L gene sequence data: Monophyly of morphologically simple algal species. Phycologia, 44, 384–392.