834
Views
0
CrossRef citations to date
0
Altmetric
Review

Live algal sorbents for the removal of potentially toxic elements: a review

, , &
Pages 15-33 | Received 09 Jul 2022, Accepted 27 Nov 2022, Published online: 03 Feb 2023

References

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257. doi:10.1016/j.biortech.2005.12.006
  • Ahner, B. A., & Morel, F. M. M. (1995a). Phytochelatin production in marine algae. 1. An Interspecies comparision. Limnology and Oceanography, 40, 658–665. doi:10.4319/lo.1995.40.4.0658
  • Ahner, B. A., & Morel, F. M. M. (1995b). Phytochelatin production in marine algae. 2. Induction by various metals. Limnology and Oceanography, 40, 658–665. doi:10.4319/lo.1995.40.4.0658
  • Ahner, B. A., Wei, L., Oleson, J. R., & Ogura, N. (2002). Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Marine Ecology Progress Series, 232, 93–103. doi:10.3354/meps232093
  • Anjum, N. A., Ahmad, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E. … Prasad, M. N. V. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-a review. Environmental and Experimental Botany, 75, 307–324. doi:10.1016/j.envexpbot.2011.07.002
  • Boran, M., & Altinok, I. (2010). A review of heavy metals in water, sediment and living organisms in the black sea. Turkish Journal of Fisheries and Aquatic Sciences, 10, 565–572. doi:10.4194/trjfas.2010.0418
  • Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109, 83–94. doi:10.3354/meps109083
  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 1–12. doi:https://doi.org/10.1155/2014/752708
  • Cobbett, C. (2002). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123, 825–832. doi:10.1104/pp.123.3.825
  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioniens: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182. doi:10.1146/annurev.arplant.53.100301.135154
  • Croot, P. L., Moffett, J. W., & Brand, L. E. (2000). Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnology and Oceanography, 45, 619–627. doi:10.4319/lo.2000.45.3.0619
  • Danouche, M., El Ghachtouli, N., El Baouchi, A., & El Arroussi, H. (2020). Heavy metals phycoremediation using tolerant green microalgae: enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. Journal of Environmental Chemical Engineering, 8, 104460. doi:10.1016/j.jece.2020.104460
  • Devez, A., Achterberg, E., & Gledhill, M. (2015). 15 metal ion-binding properties of phytochelatins and related ligands. In Metallothioneins and Related Chelators. doi:10.1515/9783110436273-020
  • Dong, F., Wang, P., Qian, W., Tang, X., Zhu, X., Wang, Z. … Wang, J. (2020). Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom skeletonema costatum. Environmental Pollution, 259, 113850. doi:10.1016/j.envpol.2019.113850
  • Dong, F., Zhu, X., Qian, W., Wang, P., & Wang, J. (2020). Combined effects of CO2-driven ocean acidification and cd stress in the marine environment: enhanced tolerance of phaeodactylum tricornutum to cd exposure. Marine Pollution Bulletin, 150, 110594. doi:https://doi.org/10.1016/j.marpolbul.2019.110594
  • Foster, P. L. (1982). Species associations and metal contents of algae from rivers polluted by heavy metals. Freshwater Biology, 12, 17–39. doi:10.1111/j.1365-2427.1982.tb00601.x
  • Friedlova, M. (2010). The influence of heavy metals on soil biological and chemical properties. Soil and Water Research, 5, 21–27. doi:10.17221/11/2009-swr
  • Gaudry, A., Zeroual, S., Gaie-Levrel, F., Moskura, M., Boujrhal, F. -Z., El Moursli, R. C. , andDelmas, R. (2007). Heavy metals pollution of the Atlantic marine environment by the Moroccan phosphate industry, as observed through their bioaccumulation in Ulva lactuca. Water, Air, and Soil Pollution, 178, 267–285. doi:10.1007/s11270-006-9196-9
  • Gekeler, W., Grill, E., Winnacker, E. L., & Zenk, M. H. (1988). Algae sequester heavy metals via synthesis of phytochelatin complexes. Archives of Microbiology, 150, 197–202. doi:10.1007/BF00425162
  • Gómez-Jacinto, V., García-Barrera, T., Gómez-Ariza, J. L., Garbayo-Nores, I., & Vílchez-Lobato, C. (2015). Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. identification of Hg–phytochelatins. Chemico-Biological Interactions, 238, 82–90. doi:10.1016/j.cbi.2015.06.013
  • Hansen, P. J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquatic Microbial Ecology, 28, 279–288. doi:10.3354/ame028279
  • He, J., & Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78. doi:10.1016/j.biortech.2014.01.068
  • Hedayatkhah, A., Cretoiu, M. S., Emtiazi, G., Stal, L. J., Bolhuis, H., Hedayatkhah, A. … Bolhuis, H. (2018). Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. Journal of Environmental Management, 227, 313–320. doi:10.1016/j.jenvman.2018.09.011
  • Holan, Z. R., & Volesky, B. (2014). Biosorption of heavy metals: Review. Journal of Chemical Science and Technology, 3, 74–102.
  • Howe, G., & Merchant, S. (1992). Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiology, 98, 127–136. doi:10.1104/pp.98.1.127
  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah -Al- Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. doi:10.1016/j.ecolind.2014.08.016
  • Kawakami, S. K., Gledhill, M., & Achterberg, E. P. (2006a). Effects of metal combinations on the production of phytochelatins and glutathione by the marine diatom Phaeodactylum tricornutum. BioMetals, 19, 51–60. doi:10.1007/s10534-005-5115-6
  • Kawakami, S. K., Gledhill, M., & Achterberg, E. P. (2006b). Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. Journal of Phycology, 42, 975–989. doi:10.1111/j.1529-8817.2006.00265.x
  • Khalil, Z. I., Asker, M. M. S., El-Sayed, S., & Kobbia, I. A. (2010). Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology & Biotechnology, 26, 1225–1231. doi:10.1007/s11274-009-0292-z
  • Kneer, R., & Zenk, M. H. (1997). The formation of cd-phytochelatin complexes in plant cell cultures. Phytochemistry, 44, 69–74. doi:10.1016/S0031-9422(96)00514-6
  • Laglera, L. M., & Van Den Berg, C. M. G. (2003). Copper complexation by thiol compounds in estuarine waters. Marine Chemistry, 82, 71–89. doi:10.1016/S0304-4203(03)00053-7
  • Lambert, A. S., Dabrin, A., Morin, S., Gahou, J., Foulquier, A., Coquery, M., & Pesce, S. (2016). Temperature modulates phototrophic periphyton response to chronic copper exposure. Environmental Pollution, 208, 821–829. doi:10.1016/j.envpol.2015.11.004
  • Lata, S., Singh, P. K., & Samadder, S. R. (2015). Regeneration of adsorbents and recovery of heavy metals: A review. International Journal of Environmental Science and Technology, 12, 1461–1478. doi:10.1007/s13762-014-0714-9
  • Lavoie, M., Le Faucheur, S., Fortin, C., & Campbell, P. G. C. (2009). Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquatic Toxicology, 92, 65–75. doi:10.1016/j.aquatox.2008.12.007
  • Libatique, M. J. H., Lee, M. –. C., & Yeh, H. –. Y. (2019). Effect of light intensity on the mechanism of inorganic arsenic accumulation and patterns in the red macroalga, Sarcodia suiae. Biological Trace Element Research, 195, 291–300. doi:10.1007/s12011-019-01833-0
  • Lin, Z., Li, J., Luan, Y., & Dai, W. (2020). Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 190, 110089. doi:10.1016/j.ecoenv.2019.110089
  • Li, L., Zhang, K., Gill, R. A., Islam, F., Farooq, M. A., Wang, J., & Zhou, W. (2018). Ecotoxicological and Interactive Effects of Copper and Chromium on Physiochemical, Ultrastructural, and Molecular Profiling in Brassica napus L. BioMed research international. doi:10.1155/2018/9248123
  • Luo, H., Wang, Q., Liu, Z., Wang, S., Long, A., & Yang, Y. (2020). Potential bioremediation effects of seaweed Gracilaria lemaneiformis on heavy metals in coastal sediment from a typical mariculture zone. Chemosphere, 245, 125636. doi:10.1016/j.chemosphere.2019.125636
  • Ma, J., Zhou, B., Chen, F., & Pan, K. (2021). How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicology and Environmental Safety, 208, 111715. doi:10.1016/j.ecoenv.2020.111715
  • Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152. doi:10.1080/07388550500248571
  • Moheimani, N. R. (2013). Inorganic carbon and pH effect on growth and lipid productivity of tetraselmis suecica and Chlorella sp (chlorophyta) grown outdoors in bag photobioreactors. Journal of Applied Phycology, 25, 387–398. doi:10.1007/s10811-012-9873-6
  • Nagalakshmi, N., & Prasad, M. N. V. (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 160, 291–299. doi:10.1016/S0168-9452(00)00392-7
  • Navarrete, A., González, A., Gómez, M., Contreras, R. A., Díaz, P., Lobos, G. … Moenne, A. (2019). Copper excess detoxification is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa. Plant Physiology and Biochemistry, 135, 423–431. doi:10.1016/j.plaphy.2018.11.019
  • Naveed, S., Li, C., Lu, X., Chen, S., Yin, B., Zhang, C., & Ge, Y. (2019). Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 49, 1769–1802. doi:10.1080/10643389.2019.1583052
  • Neumann, P. M., De Souza, M. P., Pickering, I. J., & Terry, N. (2003). Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell & Environment, 26, 897–905. doi:10.1046/j.1365-3040.2003.01022.x
  • Noctor, G., Strohm, M., Jouanin, L., Kunert, K., Foyer, C. H., & Rennenberg, H. (1995). Synthesis of glutathione in leaves of transgenic poplar overexpressing y-glutamylcysteine synthetase. Plant Physiology, 112, 1071–1078. doi:10.1104/pp.112.3.1071
  • Onyancha, F., Lubbe, D., & Brink, H. G. (2021). Enhancing low-carbon wastewaters with flue gas for the optimal cultivation of Desmodesmus multivariabilis. Chemical Engineering Transactions, 86, 355–360. doi:10.3303/CET2186060
  • Oukarroum, A. (2016). Alleviation of Metal-Induced Toxicity in Aquatic Plants by Exogenous Compounds: A Mini-Review. Water, Air, & Soil Pollution, 227. doi:10.1007/s11270-016-2907-y
  • Ozturk, S., Aslim, B., & Suludere, Z. (2010). Cadmium(ii) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 101, 9742–9748. doi:10.1016/j.biortech.2010.07.105
  • Ozturk, S., Aslim, B., Suludere, Z., & Tan, S. (2014). Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydrate Polymers, 101, 265–271. doi:10.1016/j.carbpol.2013.09.040
  • Patterson, J. W. (1985). Industrial wastewater treatment technology (Second edition (2nd ed.). Stoneham, USA: Butterorth Publisher.
  • Pawlik-Skowron, B. (2001). Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquatic Toxicology, 52, 241–249. doi:10.1016/S0166-445X(00)00144-2
  • Pawlik-Skowrońska, B. (2003). When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquatic Toxicology, 62, 155–163. doi:10.1016/S0166-445X(02)00080-2
  • Pawlik-Skowrońska, B., & Bačkor, M. (2011). Zn/pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environmental and Experimental Botany, 72, 64–70. doi:10.1016/j.envexpbot.2010.07.002
  • Peckol, P., DeMeo-Anderson, D., River, J., Valiela, I., Maldonado, M., & Yates, J. (1994). Growth, nutrient uptake capacities and tissue constituents of the macroalgae Cladophora vagabunda and Gracilaria tikvahiae related to site-specific nitrogen loading rates. Marine Biology, 121, 175–185. doi:10.1007/BF00349487
  • Perales-Vela, H. V., Peña-Castro, J. M., & Cañizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64, 1–10. doi:10.1016/j.chemosphere.2005.11.024
  • Pérez-Rama, M., Torres Vaamonde, E., & Abalde Alonso, J. (2006). Composition and production of thiol constituents induced by cadmium in the marine microalga Tetraselmis suecica. Environmental Toxicology and Chemistry, 25, 128–136. doi:10.1897/05-252R.1
  • Pesce, S., Ghiglione, J. F., & Martin-Laurent, F. (2017). Microbial Communities as Ecological Indicators of Ecosystem Recovery Following Chemical Pollution. In C. Cravo-Laureau, C. Cagnon, B. Lauga, & R. Duran (Eds.), Microbial Ecotoxicology Cham: Springer. doi:10.1007/978-3-319-61795-4_10
  • Piña-Olavide, R., Paz-Maldonado, L. M. T., Alfaro-De La Torre, M. C., García-Soto, M. J., Ramírez-Rodríguez, A. E., Rosales-Mendoza, S. , and García De la-Cruz, R. F. (2020). Increased removal of cadmium by Chlamydomonas reinhardtii modified with a synthetic gene for γ-glutamylcysteine synthetase. International Journal of Phytoremediation, 22, 1269–1277. doi:10.1080/15226514.2020.1765138
  • Pinto, E., Carvalho, A. P., Cardozo, K. H. M., Malcata, F. X., dos Anjos, F. M., & Colepicolo, P. (2011). Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Brazilian Journal of Pharmacognosy, 21, 349–354. doi:10.1590/S0102-695X2011005000060
  • Pistocchi, R., Mormile, M. A., Guerrini, F., Isani, G., & Boni, L. (2000). Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. Journal of Applied Phycology, 12, 469–477. doi:10.1023/A:1008162812651
  • Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9, 104686. doi:10.1016/j.jece.2020.104686
  • Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192–199. doi:10.1016/j.algal.2017.11.004
  • Rajfur, M. (2013). Algae - heavy metals biosorbent. Ecological Chemistry and Engineering, 20, 23–40. doi:10.2478/eces-2013-0002
  • Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309–1313. doi:10.1016/j.toxrep.2019.10.001
  • Ribeiro, C., Couto, C., Ribeiro, A. R., Maia, A. S., Santos, M., Tiritan, M. E. … Almeida, A. A. (2018). Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. The Science of the Total Environment, 639, 1381–1393. doi:10.1016/j.scitotenv.2018.05.234
  • Romano, R. L., Liria, C. W., Machini, M. T., Colepicolo, P., & Zambotti-Villela, L. (2017). Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum. Journal of Applied Phycology, 29, 811–820. doi:10.1007/s10811-016-0927-z
  • Rüegsegger, A., & Brunold, C. (1992). Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiology, 99, 428–433. doi:10.1104/pp.99.2.428
  • Sánchez-Thomas, R., García-García, J. D., Marín-Hernández, Á., Pardo, J. P., Rodríguez-Enríquez, S., Vera-Estrella, R. … Moreno-Sánchez, R. (2020). The intracellular water volume modulates the accumulation of cadmium in Euglena gracilis. Algal Research, 46, 101774. doi:10.1016/j.algal.2019.101774
  • Schäfer, H. J., Haag-Kerwer, A., & Rausch, T. (1998). cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: Evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Molecular Biology, 37, 87–97. doi:10.1023/A:1005929022061
  • Sinaei, M., Loghmani, M., & Bolouki, M. (2018). Application of biomarkers in brown algae (Cystoseria indica) to assess heavy metals (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in the northern coasts of the Gulf of Oman. Ecotoxicology and Environmental Safety, 164, 675–680. doi:10.1016/j.ecoenv.2018.08.074
  • Singh, S. P., & Schwan, A. L. (2019). Sulfur metabolism in plants and related biotechnologies. In Comprehensive Biotechnology (Vol. 4, Third Edit ed.). Elsevier. doi:10.1016/B978-0-444-64046-8.00225-1
  • Skowroński, T., De Knecht, J. A., Simons, J., & Verkleij, J. A. C. (1998). Phytochelatin synthesis in response to cadmium uptake in Vaucheria (xanthophyceae). European Journal of Phycology, 33, 87–91. doi:10.1080/09670269810001736573
  • Soldo, D., & Behra, R. (2000). Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquatic Toxicology, 47, 181–189. doi:10.1016/S0166-445X(99)00020-X
  • Stevens, A. E., Mccarthy, B. C., & Vis, M. L. (2001). Metal content of Klebsormidium-dominated (chlorophyta) algal mats from acid mine drainage waters in Southeastern Ohio. Journal of the Torrey Botanical Society, 128, 226–233. doi:10.2307/3088714
  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresource Technology, 99, 6017–6027. doi:10.1016/j.biortech.2007.11.064
  • Taboada-de la Calzada, A., Villa-Lojo, M. C., Beceiro-González, E., Alonso-Rodrı́guez, E., & Prada-Rodrı́guez, D. (1998). Determination of arsenic species in environmental samples : Use of the alga Chlorella vulgaris for Arsenic (III) retention. Trends in Analytical Chemistry, 17, 167–175. doi:10.1016/S0165-9936(98)00002-8
  • Torricelli, E., Gorbi, G., Pawlik-Skowronska, B., Di Toppi, L. S., & Corradi, M. G. (2004). Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (chlorophyceae). Aquatic Toxicology, 68, 315–323. doi:10.1016/j.aquatox.2004.03.020
  • Tüzün, I., Bayramoǧlu, G., Yalçin, E., Başaran, G., Çelik, G., & Arica, M. Y. (2005). Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management, 77, 85–92. doi:10.1016/j.jenvman.2005.01.028
  • Volland, S., Schaumlöffel, D., Dobritzsch, D., Krauss, G., & Lütz-Meindl, U. (2013). Chemosphere identification of phytochelatins in the cadmium-stressed conjugating green alga Micrasterias denticulata. Chemosphere, 91, 448–454. doi:10.1016/j.chemosphere.2012.11.064
  • Wahal, S., & Viamajala, S. (2010). Maximizing algal growth in batch reactors using sequential change in light intensity. Applied Biochemistry and Biotechnology, 161, 511–522. doi:10.1007/s12010-009-8891-6
  • Wang, M. J., & Wang, W. X. (2008). Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis. Environmental Science & Technology, 42, 8603–8608. doi:10.1021/es801470w
  • Wang, M. J., & Wang, W. X. (2011). Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure. Aquatic Toxicology, 101, 387–395. doi:10.1016/j.aquatox.2010.11.012
  • Wood, J. M. (1985). Effects of Acidification on the Mobility of Metals and Metalloids : An Overview. Environmental Health Perspective, 63, 115–119.
  • Zbikowski, R., Szefer, P., & Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. The Science of the Total Environment, 387, 320–332. doi:10.1016/j.scitotenv.2007.07.017
  • Zeng, J., Yang, L., & Wang, W. X. (2009). Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa. Aquatic Toxicology, 93, 1–10. doi:10.1016/j.aquatox.2009.02.013
  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831. doi:10.1016/j.jenvman.2016.06.059
  • Zucchi, M. R., & Necchi, O. J. (2001). Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture. Phycological Research, 49, 103–114. doi:10.1111/j.1440-1835.2001.tb00240.x