874
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Resilience and bioresponse of two marine algae to petroleum fuel pollution

&
Pages 54-77 | Received 16 Aug 2022, Accepted 03 Feb 2023, Published online: 18 Mar 2023

References

  • Abdul Hameed, M. J., & Al Obaidy, J. (2014). The toxic effects of crude oil in some freshwater cyanobacteria. Journal of Environmental Protection, 5, 359–367. doi:10.4236/jep.2014.55039
  • Akpofure, E. A., Efere, M. L., & Ayawei, P. (2000). The adverse effects of crude oil spills in the Niger Delta. Delta, Nigeria: Urhobo Historical Society.
  • Akpoghelie, O. J., Igbuku, U. A., & Osharechiren, E. (2021). Oil spill and the effects on the Niger Delta vegetation: A review. Nigerian Research Journal of Chemistry Science, 9, 1–12.
  • Amran, R. H., Jamal, M. T., Pugazhendi, A., Al-Harbi, M., Ghandourah, M., Al-Otaibi, A., & Haque, M. (2022). Biodegradation and bioremediation of petroleum hydrocarbons in marine ecosystems by microorganisms: A review. Nature Environment and Pollution Technology, 21, 1149–1157. doi:10.46488/NEPT.2022.v21i03.01m9
  • Asif, Z., Chen, Z., An, C., & Dong, J. (2022). Environmental impacts and challenges associated with oil spills on shorelines. Journal of Marine Science and Engineering, 10, 757–762. doi:10.3390/jmse10060762
  • Assaf-Sukenik, Y. C. T. B. (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte, Nannochloropsis sp. Journal of Phycology 25 686–692.
  • Atlas, R., & Bragg, J. (2009). Bioremediation of marine oil spills: When and when not - the Exxon Valdez experience. Microbial Biotechnology, 2, 213–221. doi:10.1111/j.1751-7915.2008.00079.x
  • Bianchini, J. J., Vieira, A. H. H., & Toledo, A. P. A. (1985). Colorimetric determination of the number of cells in axenic cultures of Scenedesmus quadricauda — a comparison with direct counting. Hydrobiologia, 122, 167–170. doi:10.1007/BF00032103
  • Chia, M. A., Cordeiro-Araújo, M. K., Lorenzi, A. S., & Bittencourt-Oliveira, M. C. (2016). Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? Environmental Science and Pollution Research, 23, 23092–23102. doi:10.1007/s11356-016-7538-8
  • Chia, M. A., & Kwaghe, M. J. (2015). Microcystins contamination of surface water supply sources in Zaria-Nigeria. Environmental Monitoring and Assessment, 187, 606–612. doi:10.1007/s10661-015-4829-3
  • Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, consequences, and controls in aquatic ecosystems. National Education Knowledge, 4, 10–16.
  • Cordeiro-Araújo, M. K., Chia, M. A., Hereman, T. C., Sasaki, F. F., & Bittencourt-Oliveira, M. C. (2015). Selective membrane permeability and peroxidase activity response of lettuce and arugula with cyanobacterial-contaminated water. Environmental Earth Sciences, 74, 1547–1553. doi:10.1007/s12665-015-4147-7
  • Daniel, I. E., & Nna, P. J. (2016). Total petroleum hydrocarbon concentration in surface water of cross River Estuary, Niger Delta, Nigeria. Asian Ecological Journal of Environmental Ecology, 1, 1–7. doi:10.9734/AJEE/2016/31102
  • Dhull, N. P., Soni, R., Rahi, D. K., & Soni, S. K. (2014). Evaluation of autotrophic and mixotrophic regimen Chlorella pyrenoidosa cells in various wastes water for its biochemical composition and biomass production. Peer Journal of PrePrints. doi:10.7287/peerj.preprints.681v1
  • Fabregas, J., Herrero, C., & Veiga, M. (2021). Effect of oil and dispersant on growth and chlorophyll a content of the marine microalga Tetraselmis suecica. Applied and Environmental Microbiology, 47, 445–447. doi:10.1128/aem.47.2.445-447.1984
  • Gamila, H. A., Ibrahim, M., & El-Ghafar, H. A. (2003). The role of cyanobacterial isolated strains in the biodegradation of crude oil. The International Journal of Environmental Studies, 60, 435–444. doi:10.1080/0020723032000050367
  • Gaur, J. P., & Singh, A. K. (1990). Growth, photosynthesis and nitrogen fixation of anabeana doliolum exposed to Assam Crude Extract. Bulletin of Environmental Contaminants and Toxicology, 44, 494–500.
  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith. and M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 26–60). New York, USA: Plenum Press.
  • Haghighat, S., Akhavan, S. A., Mazaheri Assadi, M., & Pasdar, H. (2008). Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery. International Journal of Environmental Science & Technology, 5, 385–390. doi:10.1007/BF03326033
  • Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine. In B. Halliwell & G. JMC (Eds.), Free radicals in biology and medicine (3rd ed., pp. 1–25). Oxford: Oxford University Press.
  • Hsu, C. S., & Robinson, P. R. (2006). Practical advances in petroleum processing: 2, 220–225. Springer.
  • Ito, T., Tanaka, M., Shinkawa, H., Nakada, T., Ano, Y., Kurano, N. … Tomita, M. (2013). Metabolic and morphological changes of an oil accumulating Trebuoxiophycean alga in nitrogen-deficient conditions. Metabolomics, 9, 178–187. doi:10.1007/s11306-012-0463-z
  • Jiang, L., Pan, Y., Zhu, S., Qiu, J., Shang, Y., Xu, J. , and Wang, H. (2022). Stimulatory and inhibitory effects of phenanthrene on physiological performance of Chlorella vulgaris and Skeletonema costatum. Science Reports, 12, 5186–5194. doi:10.1038/s41598-022-08733-9
  • Kadiri, M. O., & Azomani, L. I. (2000). Effect of brewery effluent into Ikpoba river on the growth of two Chlorophytes. Journal of Environmental Toxicology, 2, 52–62.
  • Kadiri, M. O., & Eboigbodin, A. O. (2012). Phytotoxity assessment of water soluble fractions of refined petroleum products using microalgae. Acta Botanica Hungari, 54, 3–4.
  • Kadiri, M. O., & Enoma, M. (2013). Comparative assessment of the effect of water soluble fraction of fuel oils on microalgae. International Journal of Renewable Energy Environmental, 1, 48–55.
  • Kandilian, R., Lee, E., & Pilon, L. (2013). Radiation and optional property of Nannochloropsis oculata grown under different irradiances and spectra. Bioresourcecs Technology, 137, 63–73.
  • Keramea, P., Spanoudaki, K., Zodiatis, G., Gikas, G., & Sylaios, G. (2021). Oil spill modeling: A critical review on current trends, perspectives, and challenges. Journal of Marine Science and Engineering, 9, 181–219. doi:10.3390/jmse9020181
  • Kim, Y. H., & Yoo, J. Y. (1996). Peroxidase production from carrot hairy root cell culture. Enzyme and Microbial Technology, 18, 531–535. doi:10.1016/0141-0229(95)00168-9
  • Ko, J. Y., & Day, J. W. A. (2004). Review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean & Coastal Management, 47, 597–623. doi:10.1016/j.ocecoaman.2004.12.004
  • Korolyuk, M. A., Ivanova, L. I., & Majorova, I. T. (1988). Methods of definition of catalase activity. Lab Manual, 1, 16–19.
  • Laura, B., Alicia, W., Jennifer, G., Jessica, H., Manoj, K., Zoe, V., & Antoniette, Q. (2018). The physiological response of ten phytoplankton species exposed to macondo oil and the dispersant, corexit. Journal of Phycology, 54, 317–328. doi:10.1111/jpy.12625
  • Lim, D. K. Y., Garg, S., Timmins, M., Zhang, E. S. B., Thomas-Hall, S. R., Schuhmann, H. … Schenk, P. M. (2012). Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS One, 7, 40–51. doi:10.1371/journal.pone.0040751
  • López-Rodas, V., Carrera-Martínez, D., Salgado, E., Mateos-Sanz, A., Báez, J. C., & Costas, E. (2009). A fascinating example of microalgal adaptation to extreme crude oil contamination in a natural spill in arroyo minero (pp. 883–899). Rio Negro, Argentina. Madrid, Spain: Annals of the Royal Academy of Pharmacy.
  • Lu, I. C., Chao, H. R., Mansor, W. N., Peng, C. W., Hsu, Y. C., Yu, T. Y. … Fu, L. M. (2021). Levels of phthalates, bisphenol-A, nonylphenol, and microplastics in fish in the estuaries of northern Taiwan and the impact on human health. Toxics, 9, 246–256. doi:10.3390/toxics9100246
  • Martı´nez-Go´mez, C., Vethaak, A. D., Hylland, K., Burgeot, T., Ko¨hler, A., Lyons, B. P. … Davies, I. M. (2010). A guide to toxicity assessment and monitoring effects at lower levels of biological organization following marine oil spills in European waters-ICES. ICES Journal of Marine Science, 67, 1105–1118. doi:10.1093/icesjms/fsq017
  • Martínez, J. P., Kinet, J. M., Bajji, M., & Lutts, S. (2005). NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany, 56, 2421–2431. doi:10.1093/jxb/eri235
  • Misra, H. P., & Fridovich, I. (1972). The generation of superoxide radical antioxidation of haemoglobin. The Journal of Biological Chemistry, 247, 6960–6962. doi:10.1016/S0021-9258(19)44679-6
  • Naeem, U., & Qazi, M. A. (2020). Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environmental Science and Pollution Research, 27, 27370–27382. doi:10.1007/s11356-019-06124-8
  • Nagwa, G. M., Yean-Chang, C., Abd-El-Ruhman, A. E., & Rania, F. M. (2005). Physiological responses of the eustigmatophycean Nannochloropsis salina to aqueous diesel fuel pollution. Oceanologia, 47, 75–92.
  • National Response Corporation. (1985). Oil in the sea: Inputs, fate and effect. The Natio Acad Press, 2, 65–94.
  • Nayar, S., Gohb, B. P. L., & Choua, L. M. (2004). The impact of petroleum hydrocarbons (diesel) on periphyton in an impacted tropical estuary based on in situ microcosms. Journal of Experimental Marine Biology and Ecology, 302, 213–232. doi:10.1016/j.jembe.2003.10.016
  • Nayar, S., Gohb, B. P. L., CHou, L. M., & Reddy, S. (2003). In situ microcosms to study the impact of heavy metals resuspended by dredging on periphyton in a tropical estuary. Aquatic Toxicology, 64, 293–306.
  • Nechev, J. T., Khotimchenko, S. V., Ivanova, A. P., Stefanov, K. L., Dimitrova-Konaklieva, S. D., Andreev, S., & Popov, S. S. (2002). Effect of diesel fuel pollution on the lipid composition of some wide-spread black sea algae and invertebrates. Zeitschrift Für Naturforschung C, 57, 339–343. doi:10.1515/znc-2002-3-401
  • Olufemi, A. G., Tunde, E. O., & Temitope, A. O. (2011). Determination of total petroleum hydrocarbons and heavy metals in surface water and sediment of Ubeji river, Warri, Nigeria. Bioremediation, Biodiversity and Bioavailability, 5, 46–51.
  • Peeb, A., Dang, N. P., Truu, M., Nõlvak, H., Petrich, C., & Truu, J. (2022). Assessment of hydrocarbon degradation potential in microbial communities in Arctic sea ice. Microorganisms, 10, 328–233. doi:10.3390/microorganisms10020328
  • Perez, P., Fernandez, E., & Beiras, R. (2010). Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: Growth rate vs. variable fluorescence. Ecotoxicology and Environmental Safety, 73, 254–261. doi:10.1016/j.ecoenv.2009.11.010
  • Phaterpekar, P. V., & Ansari, Z. A. (2000). Comparative toxicity of water soluble fractions of four oils on the growth of a microalga. Botanica Marina, 43, 367–375. doi:10.1515/BOT.2000.037
  • Pinto, E., Sigaud-Kutner, T., Leitao, M. A., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018. doi:10.1111/j.0022-3646.2003.02-193.x
  • Rajabnasab, M., Khavari-Nejad RA, Shokravi, S., Nejadsattari, T., & Khavari-Nejad, R. A. (2018). Investigating the physiological responses of three endaphic strains of cyanobacteria to crude oil concentrations in limited salinity and irradiation conditions. Applied Ecology and Environmental Research, 16, 4559–4573. doi:10.15666/aeer/1604_45594573
  • Razaghi, A., Godhe, A., & Albers, E. (2014). Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences, 9, 156–162. doi:10.2478/s11535-013-0248-z
  • Reyes, R., Schueftan, A., Ruiz, C., & González, A. (2018). Controlling air pollution in a context of high energy poverty levels in southern chile: Clean air but colder houses? Energy Policy, 12, 301–311. doi:10.1016/j.enpol.2018.10.022
  • Sari, G. J., Trihadiningrum, Y., & Ni’matuzahroh N. (2018). Petroleum hydrocarbon pollution in soil and surface water by public oil fields in wonocolo sub-district, Indonesia. Journal of Ecological Engineering, 19, 184–193. doi:10.12911/22998993/82800
  • Sattar, S., Hussain, R., Shah, S. M., Bibi, S., Ahmad, S. R., Shahzad, A. … Ahmad, L. (2022). Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon, 8, e11101. doi:10.1016/j.heliyon.2022.e11101
  • Soltani, N., Amira, A., Sifi, K., & Beldi, H. (2012). Environmental monitoring of the annaba gulf (Algeria): Measurement of biomarkers in Donax trunculus and metallic pollution écotoxicologie. Bullet in of Science and Zoology, 137, 47–56.
  • Somruthai, K., Rungcharn, S., & Nuttha, S. (2021). Toxicity response of Chlorella microalgae to glyphosate herbicide exposure based on biomass, pigment contents and photosynthetic efficiency. Plant Science Today, 8, 293–300. doi:10.14719/pst.2021.8.2.1068
  • Soto, C., Hutchinson, T. C., Hellebust, J. A., & Sheath, R. G. (2011). The effect of crude oil on the morphology of the green flagellate Chlamydomonas angulosa. Canadian Journal of Botany, 57, 2717–2728. doi:10.1139/b79-322
  • Sullivan, M. J., & Currin, C. A. (2000). Community structure and functional dynamics of benthic microalgae in Salt Marshes. In M. Weinstein & D. A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology (pp. 81–106). Dordrecht: Kluwer Academic Publishers.
  • Sushama, R. P., Reena, A. P., Arun, N. K., & Madhavi, M. I. (2008). Effect of Bombay high crude oil and its water soluble fraction on growth and metabolism of diatom. Thalassiosira sp. Independent Journal of Marine Science, 37, 251–255.
  • Talling, J. F. (1974). Photosynthetic pigments: General outline of spectrophotmetric methods; specific procedures. In R. A. Vollenweider Ed., A manual on methods for measuring primary production in aquatic environments. 1BP handbook (Second. 12, pp. 22–26). Blackwell, Oxford.
  • Tores, P., McNeill, A., Gibson, L. A., Wayne, A., & Yates, C. (2008). Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation, 143, 2453–2461. doi:10.1016/j.biocon.2010.06.011
  • United States Environmental Protection Agency. (1996). Total petroleum hydrocarbon (TPH) as gasoline and diesel . Washington DC,USA: US government printing office.
  • Unite Nations Environmental Program. (2006). The state of the marine environment: A regional assessment. In Global programme of action for the protection of the marine environment from land-based activities. Washington DC, USA: United Nations Environment Programme, The Hague.
  • Wang, Z., An, C., Lee, K., Owens, E., Chen, Z., Boufadel, M. … Feng, Q. (2021). Factors influencing the fate of oil spilled on shorelines: A review. Environmental Chemistry Letters, 19, 1611–1628. doi:10.1007/s10311-020-01097-4
  • Wang, Y., Tang, X., Li, Y., & Liu, Y. (2002). Stimulation effects of anthracene on marine microalgae growth. Science Total Environment, 13, 343–346.