1,688
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Evaluating the invasive plant, Prosopis juliflora in the two initial growth stages as a potential candidate for heavy metal phytostabilization in metalliferous soil

, ORCID Icon &
Pages 145-155 | Received 27 Nov 2018, Accepted 14 Feb 2019, Published online: 02 Jul 2019

References

  • El-Keblawy A. Causes and consequences of the invasion of the exotic Prosopis juliflora in the environment of the UAE. Third Annual Conference for Research Funded by UAE University, Al-Ain: UAE University Press; 2002. p. B5–B8.
  • Deans J, Diagne O, Nizinski J, et al. Comparative growth, biomass production, nutrient use and soil amelioration by nitrogen-fixing tree species in semi-arid Senegal. For Ecol Manage. 2003;176:253–264.
  • Al-Qahtani KM. Assessment of heavy metals accumulation in native plant species from soils contaminated in Riyadh City, Saudi Arabia. Life Sci J. 2012;9:384–392.
  • Yasseen BT, Al-Thani RF. Ecophysiology of wild plants and conservation perspectives in the state of Qatar. In: Stoytcheva M, Zlatev R, editors. Agricultural Chemistry. USA: InTech; 2013. p. 37-70
  • Da Conceição Gomes MA, Hauser-Davis RA, de Souza AN, et al. Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf. 2016;134:133–147.
  • Hasegawa H, Rahman IMM, Rahman MA. Environmental remediation technologies for metal-contaminated soils. Japan: Springer; 2016.
  • Usman K, Al-Ghouti MA, Abu-Dieyeh MH. Phytoremediation: halophytes as promising heavy metal hyperaccumulators; 2018.
  • Doble M, Kumar A. Biotreatment of industrial effluents. Oxford (UK): Butterworth-Heinemann; 2005.
  • Ullah A, Heng S, Munis MFH, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 2015;117:28–40.
  • Bae J, Benoit DL, Watson AK. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ Pollut. 2016;213:112–118.
  • Kranner I, Colville L. Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot. 2011;72:93–105.
  • Di Salvatore M, Carafa A, Carratù G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere. 2008;73:1461–1464.
  • Nivethitha P, Thangavel P, Prince S, et al. Identification of heavy metal accumulating plants and their use in reclamation of soil contaminated with heavy metals. Ecol EnvironConserv. 2002;8:249–251.
  • Aldrich MV, Ellzey J, Peralta-Videa J, et al. Lead uptake and the effects of EDTA on lead-tissue concentrations in the desert species mesquite (Prosopis spp.). Int J Phytoremediation. 2004;6:195–207.
  • Arias JA, Peralta-Videa JR, Ellzey JT, et al. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot. 2010;68:139–148.
  • Jayaram K, Prasad M. Removal of Pb (II) from aqueous solution by seed powder of Prosopis juliflora DC. J Hazard Mater. 2009;169:991–997.
  • Yoon J, Cao X, Zhou Q, et al. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 2006;368:456–464.
  • Baker AJ. Accumulators and excluders‐strategies in the response of plants to heavy metals. J Plant Nutr. 1981;3:643–654.
  • Srivastava M, Ma LQ, Singh N, et al. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot. 2005;56:1335–1342.
  • Zhao FJ, Hamon RE, Lombi E, et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot. 2002;53:535–543.
  • Hawari AH, Mulligan CN. Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass. Process Biochem. 2007;42:1546–1552.
  • Sengupta AK. Environmental separation of heavy metals: engineering processes. Boca Raton: CRC Press; 2001.
  • Griffiths PR, De Haseth JA. Fourier transform infrared spectrometry. Hoboken (NJ): John Wiley & Sons; 2007.
  • Panda G, Das S, Bandopadhyay T, et al. Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids Surf B Biointerfaces. 2007;57:135–142.
  • Peralta JR, Gardea-Torresdey JL, Tiemann KJ, et al. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (medicago sativa l.). Bullet Environ Contamina Toxico. 2001 Jun 24;66(6):727-34
  • Van der Ent A, Baker AJ, Reeves RD, et al. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil. 2013 Jan 1; 362 (1–2): 319–34.
  • Farooq M, Basra S, Ahmad N, et al. Thermal hardening: a new seed vigor enhancement tool in rice. J Integr Plant Biol. 2005;47:187–193.
  • Bose S, Bhattacharyya A. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere. 2008;70:1264–1272.
  • Naumann D, Helm D, Labischinski H, et al. The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: Griffiths PR, de Haseth JA, editors. Modern techniques for rapid microbiological analysis. New York: VCH-Publishers; 1991. p. 43–96.
  • Steel RG, Torrie JH, Dickey DA. Principles and procedures of statistics: A biological approach. New York: McGraw-Hill; 1997.
  • Solanki R, Dhankhar R. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia. 2011;66:195–204.
  • Ranal MA, Santana DGD. How and why to measure the germination process? Braz J Bot. 2006;29:1–11.
  • Mishra A, Choudhuri M. Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plant. 1998;41:469–473.
  • Verma S, Dubey R. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003;164:645–655.
  • Jamal SN, Iqbal M, Athar M. Effect of aluminum and chromium on the growth and germination of mesquite (Prosopis juliflora swartz.) DC. Int J Environ Sci Technol Tehran. 2006;3:173–176.
  • Khan D. Effects of cadmium on germination and seedling growth of Prosopis juliflora (Swartz) DC.–a potential metallophyte. Int J Biol Biotechnol. 2007;4:133–147.
  • Michel-López CY, Espadas Y Gil F, Fuentes Ortíz G, et al. Bioaccumulation and effect of cadmium in the photosynthetic apparatus of Prosopis juliflora. Chem Speciation Bioavailability. 2016;28:1–6.
  • Ling T, Gao Q, Du H, et al. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem Speciation Bioavailability. 2017;29:216–221.
  • Senthilkumar P, Prince WS, Sivakumar S, et al. Prosopis juliflora—a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Chemosphere. 2005;60:1493–1496.
  • Lefèvre I, Marchal G, Corréal E, et al. Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul. 2009;59:1–11.
  • Pourrut B, Shahid M, Dumat C, et al. Lead uptake, toxicity, and detoxification in plants. In: Reviews of environmental contamination and toxicology. Vol. 213. Berlin: Springer-Verlag; 2011. p. 113–136.
  • Gupta D, Nicoloso F, Schetinger M, et al. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater. 2009;172:479–484.
  • BiernackiM, Lovett‐Doust J. Developmental shifts in watermelon growth and reproduction caused by the squash bug, anasa tristis. New Phytolo. 2002;155(2):265–273.
  • Chaerle L, Van Der Straeten D. Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta. 2001;1519:153–166.
  • Hu R, Sun K, Su X, et al. Physiological responses and tolerance mechanisms to Pb in two xerophils: salsola passerina Bunge and Chenopodium album L. J Hazard Mater. 2012;205:131–138.
  • Langley-Turnbaugh S, Belanger L. Phytoremediation of lead in urban residential soils of Portland, Maine. Soil Horiz. 2010;51:95–101.
  • Nie M, Wang Y, Yu J, et al. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One. 2011;6:e17961.
  • Islam E, Yang X, Li T, et al. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater. 2007;147:806–816.
  • Maiti SK, Jaiswal S. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess. 2008;136:355–370.
  • Arshad M, Silvestre J, Pinelli E, et al. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere. 2008;71:2187–2192.
  • Manousaki E, Kalogerakis N. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res. 2009;16:844–854.
  • Kumar A, Maiti SK. Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India. Bull Environ Contam Toxicol. 2014;93:434–441.
  • Maestri E, Marmiroli M, Visioli G, et al. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot. 2010;68:1–13.
  • Li Z, Tang X, Chen Y, et al. Activation of Firmiana simplex leaf and the enhanced Pb (II) adsorption performance: equilibrium and kinetic studies. J Hazard Mater. 2009;169:386–394.
  • Dumas P, Miller L. The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc. 2003;32:3–21.
  • Hanafiah M, Zakaria H, Ngah WW. Preparation, characterization, and adsorption behavior of Cu (II) ions onto alkali-treated weed (Imperata cylindrica) leaf powder. Water Air Soil Pollut. 2009;201:43–53.
  • Wolkers WF, Oliver AE, Tablin F, et al. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res. 2004;339:1077–1085.
  • Ng CC, Boyce AN, Rahman MM, et al. Phyto-evaluation of Cd-Pb using tropical plants in soil-leachate conditions. Air Soil Water Res. 2018;11:1178622118777763.
  • Tang Y-T, Qiu R-L, Zeng X-W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot. 2009;66:126–134.
  • Yang S, Liang S, Yi L, et al. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Environ Sci Eng. 2014;8:394–404.
  • Hladun KR, Parker DR, Trumble JT. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. J Chem Ecol. 2015;41:386–395.