4,235
Views
7
CrossRef citations to date
0
Altmetric
Review Article

A review of mercury pathological effects on organs specific of fishes

, , , , , & show all
Pages 76-87 | Received 16 Nov 2020, Accepted 16 Apr 2021, Published online: 05 May 2021

References

  • Visha A, Gandhi N, Bhavsar SP, et al. Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: a Bayesian perspective. Environ Pollut. 2018;24:3777–3789.
  • Zahir F, Rizwi SJ, Haq SK, et al. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 2005;20(2):351–360.
  • Akramipour R, Golpayegani MR, Gheini S, et al. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta. 2018;186:17–23.
  • Chong X, Wang Y, Liu R, et al. Pollution characteristics and source difference of gaseous elemental mercury between haze and non-haze days in winter. Sci Total Environ. 2019;678:671–680.
  • Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45(6):344–352.
  • Wang Q, Kim D, Dionysiou DD, et al. Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut. 2004;131(2):323–336.
  • Risher JF, World Health Organization. Elemental mercury and inorganic mercury compounds: human health aspects. World Health Organization, Geneva; 2003.
  • Castilhos ZC, Rodrigues-Filho S, Rodrigues APC, et al. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Sci Total Environ. 2006;368(1):320–325.
  • Vöröš D, Díazsomoano M, Geršlová E, et al. Mercury contamination of stream sediments in the North Bohemian Coal District (Czech Republic): mercury speciation and the role of organic matter. Chemosphere. 2018;211:664–673.
  • Gebremedhin K, Berhanu T. Determination of some selected heavy metals in fish and water samples from Hawassa and Ziway Lakes. Sci J Anal Chem. 2015;3(1):10–16.
  • Pacyna EG, Pacyna JM, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ. 2010;44(20):2487–2499.
  • Syversen T, Kaur P. The toxicology of mercury and its compounds. J Trace Elem Med Biol. 2012;26(4):215–226.
  • Branco V, Ramos P, Canário J, et al. Biomarkers of adverse response to mercury: histopathology versus thioredoxin reductase activity. BioMed Res Int. 2012;359879:1–9.
  • Ekino S, Susa M, Ninomiya T, et al. Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neuro Sci. 2007;262(1–2):131–144.
  • Wiener JG. Mercury exposed: advances in environmental analysis and ecotoxicology of a highly toxic metal. Environ Toxicol Chem. 2013;32(10):2175–2178.
  • Sakamoto M, Itai T, Marumoto K, et al. Mercury speciation in preserved historical sludge: potential risk from sludge contained within reclaimed land of Minamata Bay, Japan. Environ Res. 2020;180:108668.
  • Li P, Feng XB, Qiu GL, et al. Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater. 2009;168(2–3):591–601.
  • Okpala COR, Sardo G, Vitale S, et al. Hazardous properties and toxicological update of mercury: from fish food to human health safety perspective. Crit Rev Food Sci Nut. 2017;58(12):1986–2001.
  • Kaoud HA, El-Dahshan AR. Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci. 2010;8:147–156.
  • Crump KL, Trudeau VL. Mercury‐induced reproductive impairment in fish. Environ Toxicol Chem. 2009;28(5):895–907.
  • Debes F, Budtz-Jørgensen E, Weihe P, et al. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28(5):536–547.
  • Condini MV, Hoeinghaus DJ, Roberts AP, et al. Mercury concentrations in dusky grouper Epinephelus marginatus in littoral and neritic habitats along the Southern Brazilian coast. Mar Pollut Bull. 2017;115(1–2):266–272.
  • Elsayed H, Yigiterhan O, Al-Ansari EM, et al. Methylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf). Reg Stud Mar Sci. 2020;37:101334.
  • Soares JM, Gomes JM, Anjos MR, et al. Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations. Food Res Int. 2018;109:537–543.
  • Farina M, Rocha JB, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011;89(15–16):555–563.
  • Mela M, Randi MAF, Ventura DF, et al. Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotox Environ Safe. 2007;68(3):426–435.
  • Adams DH, Sonne C. Mercury and histopathology of the vulnerable goliath grouper, Epinephelus itajara, in US waters: a multi-tissue approach. Environ Res. 2013;126:254–263.
  • Oliveira Ribeiro CA, Belger L, Pelletier E, et al. Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environ Res. 2002;90(3):217–225.
  • Depew DC, Basu N, Burgess NM, et al. Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Environ Toxicol Chem. 2012;31(7):1536–1547.
  • Fathi M, Binkowski LJ, Azadi NA, et al. Co-exposure effects of mercury chloride (HgCl2) and silver nanoparticles (Ag-NPs) on goldfish (Carassius auratus): histopathological changes, oxidative stress response, and bioaccumulation. Desalin Water Treat. 2018;105:264–272.
  • Mansouri B, Baramaki R, Ebrahimpour M. Acute toxicity bioassay of mercury and silver on Capoeta fusca (black fish). Toxicol Ind Health. 2012;28(5):393–398.
  • Lee J-W, Kim J-W, De Riu N, et al. Histopathological alterations of juvenile green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) exposed to graded levels of dietary methylmercury. Aquat Toxi. 2012;109:90–99.
  • Adams DH, Sonne C, Basu N, et al. Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ. 2010;408(23):5808–5816.
  • Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260(1):8–20.
  • Cambier S, Gonzalez P, Mesmer-Dudons N, et al. Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. Biometals. 2012;25(1):165–180.
  • Macirella R, Brunelli E. Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int J Mol Sci. 2017;18:824.
  • Jasim MA, Sofian-Azirun M, Yusoff I, et al. Bioaccumulation and histopathological changes induced by toxicity of mercury (HgCl2) to tilapia fish Oreochromis niloticus. Sains Malaysiana. 2016;45:119–127.
  • Hassaninezhad L, Safahieh A, Salamat N, et al. Assessment of gill pathological responses in the tropical fish yellowfin seabream of Persian Gulf under mercury exposure. Toxicol Rep. 2014;1:621–628.
  • Borges AC, Da Silva MC, Barbosa LA, et al. Integrated use of histological and ultrastructural biomarkers for assessing mercury pollution in piranhas (Serrasalmus rhombeus) from the Amazon mining region. Chemosphere. 2018;202:788.
  • Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci. 2016;8(3):72.
  • Gordetsky JB, Ullman D, Schultz L, et al. Histologic findings associated with false-positive multiparametric magnetic resonance imaging performed for prostate cancer detection. Hum Pathol. 2019;83:159–165.
  • Kuklina I, Kouba A, Buřič M, et al. Accumulation of heavy metals in crayfish and fish from selected Czech reservoirs. BioMed Res Int. 2014;2014:1–9.
  • Vergilio CS, Cev C, Melo EJT. Accumulation and histopathological effects of mercury chloride after acute exposure in tropical fish Gymnotus carapo. J Chem Health Risks. 2012;2:1–8.
  • Vieira LR, Gravato C, Soares AMVM, et al. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere. 2009;76(10):1416–1427.
  • Camargo MM, Martinez CB. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol. 2007;5(3):327–336.
  • Flores-Lopes F, Thomaz AT. Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Braz J Biol. 2011;71(1):179–188.
  • Bernet D, Schmidt H, Meier W, et al. Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis. 1999;22(1):25–34.
  • Liew HJ, Sinha AK, Nawata CM, et al. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat Toxicol. 2013;126:63–76.
  • Monteiro SM, Oliveira E, Fontaínhas-Fernandes A, et al. Effects of sublethal and lethal copper concentrations on the gill epithelium ultrastructure of Nile tilapia, Oreochromis niloticus. Zool Stud. 2012;51:977–987.
  • Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 2005;85:97–177.
  • Abdel-Moneim AM, Al-Kahtani MA, Elmenshawy OM. Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere. 2012;88(8):1028–1035.
  • Hamid MA, Mansor M, Nor SAM. Length-weight relationship and condition factor of fish populations in Temengor reservoir: indication of environmental health. Sains Malaysiana. 2015;44(1):61–66.
  • Pirsaheb M, Azadi NA, Miglietta ML, et al. Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere. 2019;215:904–915.
  • Mansouri B, Maleki A, Johari SA, et al. Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles. Chem Ecol. 2017;33(4):295–308.
  • Mansouri B, Maleki A, Davari B, et al. Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO. Environ Monit Assess. 2016;188(10):1–2.
  • Lukin A, Sharova J, Belicheva L, et al. Assessment of fish health status in the Pechora River: effects of contamination. Ecotox Environ Safe. 2011;74(3):355–365.
  • Santos D, Melo M, Mendes D, et al. Histological changes in gills of two fish species as indicators of water quality in Jansen Lagoon (São Luís, Maranhão State, Brazil). Int J Enviro Res Public Health. 2014;11(12):12927–12937.
  • Sayadi MH, Mansouri B, Shahri E, et al. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere. 2020;247:125900.
  • Salamat N, Zarie M. Using of fish pathological alterations to assess aquatic pollution: a review. World J Fish Mar Sci. 2012;4:223–231.
  • Moyson S, Liew HJ, Diricx M, et al. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio). Comp Biochem Phys. 2015;197:133–143.
  • Yancheva VS, Georgieva ES, Velcheva IG, et al. Biomarkers in European perch (Perca fluviatilis) liver from a metal-contaminated dam lake. Biologia. 2014;69:1615–1624.
  • Chen QL, Sun YL, Liu ZH, et al. Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere. 2017;188:1–9.
  • Safahieh A, Hedayati A, Savari A, et al. Effect of sublethal dose of mercury toxicity on liver cells and tissue of yellowfin seabream. Toxicol Ind Health. 2012;28(7):583–592.
  • Mok WJ, Hatanaka Y, Seoka M, et al. Effects of additional cysteine in fish diet on mercury concentration. Food Chem. 2014;147:340–345.
  • Saraiva A, Costa J, Serrão J, et al. A histology-based fish health assessment of farmed seabass (Dicentrarchus labrax L.). Aquaculture. 2015;448:375–381.
  • Liew HJ, Pelle A, Chiarella D, et al. Common carp, Cyprinus carpio, prefer branchial ionoregulation at high feeding rates and kidney ionoregulation when food supply is limited: additional effects of cortisol and exercise. Fish Physiol Biochem. 2020;46(1):451–469.
  • Moyson S, Liew HJ, Fazio A, et al. Kidney activity increase in copper exposed goldfish (Carassius auratus auratus). Comp Biochem Physiol. 2016;190:32–37.
  • Gehringer DB, Finkelstein ME, Coale KH, et al. Assessing mercury exposure and biomarkers in largemouth bass (Micropterus salmoides) from a contaminated river system in California. Arch Environ Con Tox. 2013;64(3):484–493.
  • Kaewamatawong T, Rattanapinyopituk K, Ponpornpisit A, et al. Short-term exposure of Nile Tilapia (Oreochromis niloticus) to mercury. Toxicol Pathol. 2013;41(3):470–479.
  • Pereira P, Korbas M, Pereira V, et al. A multidimensional concept for mercury neuronal and sensory toxicity in fish- From toxicokinetics and biochemistry to morphometry and behavior. Biochim Biophys Acta Gen Subj. 2019;1863(12): 129298.
  • Berntssen MHG, Aatland A, Handy RD. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol. 2003;65(1):55–72.
  • Egerton S, Culloty S, Whooley J, et al. The gut microbiota of marine fish. Front Microbiol. 2018;9:873.
  • Peng X, Liu F, Wang WX. Organ‐specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Environ Toxicol Chem. 2016;35(8):2074–2083.
  • Leaner JJ, Mason RP. Methylmercury uptake and distribution kinetics in sheepshead minnows, Cyprinodon variegatus, after exposure to CH3Hg‐spiked food. Environ Toxicol Chem. 2004;23(9):2138–2146.
  • Garnero PL, Monferran MV, de los Ángeles Bistoni M. Uptake, tissue distribution and elimination in a native fish species Astyanax eigenmanniorum exposed to inorganic mercury. Aquat Toxicol. 2020;226:105567.
  • Waheed R, El Asely AM, Bakery H, et al. Thermal stress accelerates mercury chloride toxicity in Oreochromis niloticus via up-regulation of mercury bioaccumulation and HSP70 mRNA expression. Sci Total Environ. 2020;718:137326.
  • Deng DF, Teh FC, Teh SJ. Effect of dietary methylmercury and seleno-methionine on Sacramento splittail larvae. Sci Total Environ. 2008;407(1):197–203.
  • Hajeb P, Jinap S. Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride. J Agric Food Chem. 2012;60(23):6069–6076.
  • Dobrowolski JC, Rode JE, Sadlej J. Cysteine conformations revisited. J Mol Struc-THEOCHEM. 2007;810(1–3):129–134.
  • Choi AL, Budtz-Jørgensen E, Jørgensen PJ, et al. Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ Res. 2008;107(1):45–52.
  • Beyrouty P, Chan HM. Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats. Neurotoxicol Teratol. 2006;28(1):49–58.