5,054
Views
4
CrossRef citations to date
0
Altmetric
Review Article

A concise overview on pesticide detection and degradation strategies

&
Pages 112-126 | Received 11 Nov 2021, Accepted 07 Feb 2022, Published online: 20 Mar 2022

References

  • Ali, N., Khan S, Khan, M.A., Waqas, M., and Yao, H.,2019. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. Environmental Science and Pollution Research. 26(9), pp.8808-8820.
  • Singh, N.S., Sharma, R, Parween, T. and Patanjali, P.K., 2018. Pesticide contamination and human health risk factor. In: Modern age environmental problems and their remediation.pp. 49-68. Springer, Cham.
  • Simonelli A, Basilicata P, Miraglia N, et al. Analytical method validation for the evaluation of cutaneous occupational exposure to different chemical classes of pesticides. J Chromatogr B. 2007;860(1):26–33.
  • Rani L, Thapa K, Kanojia N, et al. An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod. 2021;283:124657.
  • Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. SciTotal Environ. 2017;575:525–535.
  • Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ Toxicol Pharmacol. 2018;63:103–114.
  • Lu Y, Song S, Wang R, et al. Impacts of soil and water pollution on food safety and health risks in China. Environ Int. 2015;77:5–15.
  • Erinle KO, Jiang Z, Ma B, et al. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. Ecotoxicol Environ Saf. 2016;132(Supplement C):403–412.
  • Chowdhury A, Pradhan S, Saha M, et al. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Ind J Microbiol. 2008;48(1):114–127
  • Rosenbom S, Costa V, Alaraimi N, et al. Genetic diversity of donkey populations from the putative centers of domestication.[J]. Anim Genet. 2015;46(1):30–36.
  • Andleeb S, Jiang Z, Rehman K, et al. Influence of soil pH and temperature on atrazine bioremediation. Journal of Northeast Agricultural University (English Edition). 2016;23(2):12–19.
  • Kaur R, Mavi GK, Raghav S, et al. Pesticides classification and its impact on environment. International Journal of Current Microbiology and Applied Sciences. 2019;8(3):1889–1897.
  • Wang DZ, Kong LF, Li YY, et al. Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci. 2016;17(8):1275.
  • Yadav IC, Devi NL. Pesticides classification and its impact on human and environment. Environmental science and engineering. 2017;6:140–158.
  • Bilal M, Iqbal HM, Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. SciTotal Environ. 2019;695:133896.
  • Kerle E.A., Jenkins, J.J, and Vogue, P.A. (2007). Understanding Pesticide Persistence and Mobility for Groundwater and Surface Water Protection. Oregon State University Extension Services, EM8561-E.
  • Deer HM. Pesticide adsorption and half-life. AG/Pesticides. 1999;15:1.
  • Zacco E, Pividori MI, Alegret S, et al. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem. 2006;78(6):1780.
  • Alcantara-Duran J, Moreno-Gonzalez D, Gilbert-Lopez B, et al. Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry. Food Chem. 2018;245:29–38.
  • Jia M, Zhai F, Bing X. Rapid multi-residue detection methods for pesticides and veterinary drugs. Molecules. 2020;25(16):3590.
  • Van Dyk JS, Pletschke B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere. 2011;82(3):291–307.
  • Bapat G, Labade C, Chaudhari A, et al. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interface Sci. 2016;237:1–14.
  • Bhadekar R, Pote S, Tale V, et al. Developments in analytical methods for detection of pesticides in environmental samples. American Journal of Analytical Chemistry. 2011;2(8):1.
  • Qiu L, Lv P, Zhao C, et al. Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes. Sens Actuators B Chem. 2019;286:386–393.
  • Pérez-Fernández B, Costa-García A, Muñiz ADLE. Electrochemical (bio) sensors for pesticides detection using screen-printed electrodes. Biosensors (Basel). 2020;10(4):32.
  • Anu Prathap MU, Chaurasia AK, Sawant SN, et al. Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal Chem. 2012;84(15):6672–6678.
  • Anu Prathap MU, Sun S, Wei C, et al. A novel non-enzymatic lindane sensor based on CuO–MnO2 hierarchical nano-microstructures for enhanced sensitivity. Chemical Communications. 2015;51(21):4376–4379.
  • Rahemi V, Garrido JMPJ, Borges F, et al. Electrochemical determination of the herbicide bentazone using a carbon nanotube β-cyclodextrin modified electrode. Electroanalysis. 2013;25:2360–2366.
  • Kalyani, N., Goel, S., and Jaiswal, S., 2021. On-site sensing of pesticides using point-of-care biosensors: a review. Environmental Chemistry Letters, 19(1), pp.345-354.
  • Drechsel L, Schulz M, von Stetten F, et al. Electrochemical pesticide detection with AutoDip–a portable platform for automation of crude sample analyses. Lab Chip. 2015;15(3):704–710.
  • Kumaravel A, Vincent S, Chandrasekaran M. Development of an electroanalytical sensor for γ-hexachlorocyclohexane based on a cellulose acetate modified glassy carbon electrode. Anal Methods. 2013;5(4):931–938.
  • Fayemi OE, Adekunle AS, Ebenso EE. A sensor for the determination of lindane using PANI/Zn, Fe(III) Oxides and Nylon 6,6/MWCNT/Zn, Fe(III) oxides nanofibers modified glassy carbon electrode. J Nanomater. 2016;2016:1–10.
  • Beland, F. A., Farwell, S. O., Robocker, A. E., and Geer, R. D., 1976. Electrochemical reduction and anaerobic degradation of lindane. Journal of Agricultural and Food Chemistry, 24(4), pp.753-756.
  • Songa EA, Somerset VS, Waryo T, et al. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl Chem. 2009;81(1):123–139.
  • Sánchez-Bayo F, Hyne RV, Desseille KL. An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta. 2010;675(2):125–131.
  • Noori JS, Mortensen J, Geto A. Recent development on the electrochemical detection of selected pesticides: a focused review. Sensors. 2020;20(8):2221.
  • Coutinho CFB, Coutinho LFM, Mazo LH, et al. Copper microelectrode as liquid chromatography detector for herbicide glyphosate. Electroanalysis. 2007;19(11):1223–1226.
  • Méndez MA, Súarez MF, Cortés MT, et al. Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochem Commun. 2007;9(10):2585–2590.
  • Do MH, Florea A, Farre C, et al. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem. 2015;95(15):1489–1501.
  • Cahuantzi-Muñoz SL, González-Fuentes MA, Ortiz-Frade LA, et al. Electrochemical biosensor for sensitive quantification of glyphosate in maize kernels. Electroanalysis 2019;31(5):927–935.
  • Noori JS, Dimaki M, Mortensen J, et al. Detection of glyphosate in drinking water: a fast and direct detection method without sample pretreatment. Sensors. 2018;18(9):2961.
  • Arduini F, Cinti S, Scognamiglio V, et al. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochim Acta. 2016;183(7):2063–2083.
  • Lee JH, Park JY, Min K, et al. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron. 2010;25(7):1566–1570.
  • Aydogan A. Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography, Anal. Bioanal Chem. 2016;408(29):8457–8466
  • Ahmed M, Yajadda MMA, Han Z, et al. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J Chromatogr A. 2014;1360:100–109.
  • Zhao K, Fu W, Qiu Q, et al. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma. 2019;337:453–462.
  • Yin Z, Zhao W, Tian M, et al. A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly. Analys.t. 2013;139(8):1973–1979.
  • Weiser D, Bencze LC, Bánóczi G, et al. Phenylalanine ammonia-lyase-catalyzed deamination of an acyclic amino acid: enzyme mechanistic studies aided by a novel microreactor filled with magnetic nanoparticles. ChemBioChem. 2015;16(16):2283–2288.
  • Gong A, Zhu CT, Xu Y, et al. Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis. Sci Rep. 2017;7(1):1–15.
  • Evans D, Gabriel EFM, Benavidez TE, et al. Modification of microfluidic paper-based devices with silica nanoparticles. Analyst. 2014;139(21):5560–5567.
  • Anitha K, VenkataMohan S, JayaramaReddy S. Development of acetylcholinesterase silica sol-gel immobilized biosensor-an application towards Oxydemeton methyl detection. Biosens Bioelectron. 2004;20(4):848–856.
  • Dhull V, Gahlaut A, Dilbaghi N, et al. Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review. Biochem Res Int. 2013;2013:1–18.
  • Yang L, Wang GC, Liu YJ, et al. Development of a stable biosensor based on a SiO2 nanosheet–Nafion–modified glassy carbon electrode for sensitive detection of pesticides. Anal Bioanal Chem. 2013;405(8):2545–2552.
  • Du D, Chen S, Cai J, et al. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide. Biosens Bioelectron. 2007;23(1):130–134.
  • Luckham RE, Brennan JD. Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol–gel/enzyme/gold nanoparticle composites. Analyst. 2010;135(8):2028–2035.
  • Carullo P, Cetrangolo GP, Mandrich L, et al. Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors. 2015;15(2):3932–3951.
  • Sun X, Xia K, Liu B. Design of fluorescent self-assembled multilayers and interfacial sensing for organophosphorus pesticides. Talanta. 2008;76(4):747–751.
  • Dong J, Yang H, Li Y, et al. Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction. Anal Chim Acta. 2020;1131:102–108.
  • Pang STR, Yang TX, He LL. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC-Trend. Anal Chem. 2016;85:73–82.
  • Cialla D, März A, Böhme R, et al. Surface-enhanced 598 Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem. 2012;403(1):27–599 54.
  • Vessman J, Stefan RI, Van Staden JF, et al. Selectivity in analytical chemistry (IUPAC Recommendations 2001). Pure Appl Chem. 2001;73(8):1381–1386.
  • Bernat A, Samiwala M, Albo J, et al. Challenges in SERS-based pesticide detection and plausible solutions. J Agric Food Chem. 2019;67(45):12341–12347.
  • Li DW, Zhai WL, Li YT, et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochim Acta. 2014;181(1–2):23–43.
  • Zhang YY, Wang XP, Pemer S, et al. Effect of antigen retrieval methods on nonspecific binding of antibody-metal nanoparticle conjugates on formalin-fixed paraffin-embedded tissue. Anal Chem. 2018;90(1):760–768.
  • Moldovan R, Iacob BC, Farcău C, et al. Strategies for SERS detection of organochlorine pesticides. Nanomaterials. 2021;11(2):304.
  • Li X, Yang T, Song Y, et al. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sens Actuators B Chem. 2019;283:230–238.
  • Vikrant K, Tsang DCW, Raza N, et al. Potential utility of metal–organic framework-based platform for sensing pesticides. ACS Appl Mater. Interfaces 2018. 2018;10(10):8797–8817. ().
  • Zhu C, Meng G, Zheng P, et al. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced raman scattering detection of phenolic pollutants. Adv Mater. 2016;28(24):4871–4876.
  • Mariño-Lopez A, Sousa-Castillo A, Blanco-Formoso M, et al. Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters. Chem Nanomater Energy Biol More. 2019;5:46–50.
  • Zhou X, Zhao Q, Liu G, et al. Kinetically-controlled growth of chestnut-like au nanocrystals with high-density tips and their high SERS performances on organochlorine pesticides. Nanomaterials. 2018;8(7):560.
  • Guerrini L, Izquierdo-Lorenzo I, Garcia-Ramos JV, et al. Self-assembly of α,ω-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots. Phys Chem Chem Phys. 2009;11(34):7363–7371.
  • Kubackova J, Fabriciova G, Miskovsky P, et al. Sensitive surface-enhanced Raman Spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal Chem. 2015;87(1):663–669.
  • Qu Y, He L. Development of a facile rolling method to amplify an analyte’s weak SERS activity and its application for chlordane detection. Anal Methods. 2020;12(4):433–439.
  • Kim A, Barcelo SJ, Li Z. SERS-based pesticide detection by using nanofinger sensors. Nanotechnology. 2014;26(1):15502.
  • Xu Y, Kutsanedzie FY, Hassan M, et al. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020;315:126300.
  • Umapathi R, Ghoreishian SM, Sonwal S, et al. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev. 2022;453:214305.
  • Hong T, Liu W, Li M, et al. Recent advances in the fabrication and application of nanomaterial-based enzymatic microsystems in chemical and biological sciences. Anal Chim Acta. 2019;1067:31–47.
  • Kah M, Beulke S, Brown CD. Factors influencing degradation of pesticides in soil. J Agric Food Chem. 2007;55(11):4487–4492.
  • Verma JP, Jaiswal DK, Sagar R. Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Bio/Technol. 2014;13(4):429–466.
  • Parte SG, Mohekar AD, Kharat AS. Microbial degradation of pesticide: a review. Afr J Microbiol Res. 2017;11(24):992–1012.
  • Chiron S, Fernandez-Alba A, Rodriguez A, et al. Pesticide chemical oxidation: state-of-the-art. Water Res. 2000;34(2):366–377.
  • Marican A, Durán-Lara EF. A review on pesticide removal through different processes. Environ Sci Pollut Res. 2018;25(3):2051–2064.
  • Shea PJ, Machacek T, Comfort S. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ Pollut. 2004;132(2):183–188.
  • Shoiful A, Ueda Y, Nugroho R, et al. Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Process Eng. 2016;11:110–117. https://doi.org/10.1016/j.jwpe.2016.02.011.
  • Cheng M, Zeng G, Huang D, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J. 2016;284:582–598.
  • Bai H, Zhou J, Zhang H, et al. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf B Biointerfaces. 2017;150:68–77.
  • Ray S, Lalman JA. Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst. Mater Today Proc. 2016;3(6):1582–1591.
  • Kanan S, Moyet MA, Arthur RB, et al. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews. 2020;62(1):1–65.
  • Buzea C, Pacheco I, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71.
  • Ma Y, Zheng Y, Chen JP. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: synthesis, characterization and performance. J Colloid Interface Sci. 2011;354(2):785–792.
  • Carabineiro SA. Supported gold nanoparticles as catalysts for the oxidation of alcohols and alkanes. Front Chem. 2019;7:702.
  • Perera M, Wijenayaka LA, Siriwardana K, et al. Gold nanoparticle decorated titania for sustainable environmental remediation: green synthesis, enhanced surface adsorption and synergistic photocatalysis. RSC Adv. 2020;10(49):29594–29602.
  • Ide Y, Matsuoka M, Ogawa M. Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered Titanate. J Am Chem Soc. 2010;132(47):16762–16764.
  • Guerra FD, Attia MF, Whitehead DC, et al. Nanotechnology for environmental remediation: materials and applications. Molecules. 2018;23(7):1760.
  • Tian H, Li J, Mu Z, et al. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol. 2009;66(1):84–89.
  • El-Temsah YS, Sevcu A, Bobcikova K, et al. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zerovalent iron (nZVI) in water and soil. Chemosphere. 2016;144:2221–2228.
  • Joo SH, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere. 2008;70(3):418–425.
  • Thomas J, Kumar KP, Chitra KR. Synthesis of Ag doped Nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan. Adv Sci Lett. 2011;4(1):108–114.
  • Budarz JF, Cooper EM, Gardner C, et al. Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: assessing the impact of a multi-component degradation scenario. J Hazard Mater. 2019;372:61–68.
  • Khan SH, Pathak B, Fulekar M. Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: znO nanocomposite material. Nanotechnology for Environmental Engineering. 2018;3(1):13.
  • Das A, Singh J, Yogalakshmi K. Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegrad. 2017;117:183–189.
  • Srivastava M, Abhilash PC, Singh N. Remediation of lindane using engineered nanoparticles. J Biomed Nanotechnol. 2011;7(1):172–174.
  • Rosales GG, Ávila-Pérez P, Reza-García JO, et al. Nanoparticle beads of Chitosan-Ethylene Glycol Diglycidyl Ether/Fe for the removal of aldrin. J Chem. 2021;2021:1–13.
  • Wang S, Wang J, Shang F, et al. A GA-BP method of detecting carbamate pesticide mixture based on three-dimensional fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;224:117396.
  • Boudh, S. and Singh, J. S., 2019. Pesticide contamination: environmental problems and remediation strategies. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore.
  • Sartoros C, Yerushalmi L, Béron P, et al. Effects of Surfactant and Temperature on Biotransformation Kinetics of Anthracene and Pyrene. Chemosphere. 2015;61(7):1042–1050.
  • Bhattacharya J, Islam M, Cheong YW. Microbial growth and action: implications for passive bioremediation of acid mine drainage. J Mine Water Environ. 2006;25(4):233–240
  • Nakajima T, Shigeno Y. Polyester plastic-degrading microorganism, polyester plastic-degrading enzyme and polynucleotide encoding the enzyme. EP 1849859B1. 2014 Jan 21
  • Huang Y, Xiao L, Li F, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules. 2018;23(9):2313.
  • Bose S, Kumar PS, Vo DVN. A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere. 2021;283:131447.
  • Yang J, Feng Y, Zhan H, et al. Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of D-phenothrin. Front Microbiol. 2018;9:1003.
  • Bhatt P, Huang Y, Rene ER, et al. Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Bioresour Technol. 2020;305:123074.
  • Bhatt P, Huang Y, Zhang W, et al. Enhanced cypermethrin degradation kinetics and metabolic pathway in Bacillus thuringiensis strain SG4. Microorganisms. 2020;8(2):223.
  • Bhatt P, Zhang W, Lin Z, et al. Biodegradation of allethrin by a novel fungus Fusarium proliferatum strain CF2, isolated from contaminated soils. Microorganisms. 2020;8(4):593.
  • Narayanan M, Kumarasamy S, Ranganathan M, et al. Enzyme and metabolites attained in degradation of chemical pesticides ß Cypermethrin by Bacillus cereus. Mater Today Proc. 2020;33:3640–3645.
  • Logeshwaran P, Krishnan K, Naidu R, et al. Purification and characterization of a novel fenamiphos hydrolysing enzyme from Microbacterium esteraromaticum MM1. Chemosphere. 2020;252:126549.
  • Sirajuddin S, Khan MA, Qader SAU, et al. A comparative study on degradation of complex malathion organophosphate using of Escherichia coli IES-02 and a novel carboxylesterase. Int J Biol Macromol. 2020;145:445–455.
  • Dash DM, Osborne JW. Biodegradation of monocrotophos by a plant growth promoting Bacillus aryabhattai (VITNNDJ5) strain in artificially contaminated soil. Int J Environ Sci Technol. 2020;17(3):1475–1490.
  • Cardozo M, de Almeida JS, Cavalcante SFDA, et al. Biodegradation of organophosphorus compounds predicted by enzymatic process using molecular modelling and observed in soil samples through analytical techniques and microbiological analysis: a comparison. Molecules. 2020;25(1):58.
  • Aswathi A, Pandey A, Sukumaran RK. Rapid degradation of the organophosphate pesticide–Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresour Technol. 2019;292:122025.
  • Senko O, Maslova O, Efremenko E. Optimization of the use of His6-OPH-based enzymatic biocatalysts for the destruction of chlorpyrifos in soil. Int J Environ Res Public Health. 2017;14(12):1438.
  • Rani M, Shanker U, Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage. 2017;190:208–222.
  • Li, D., and Wang, Y., 2017, 'Plasmonic Nanostructures as Surface-Enhanced Raman Scattering (SERS) Substrate for Protein Biomarker Sensing', in G. Barbillon (ed.), Nanoplasmonics - Fundamentals and Applications, IntechOpen, London. 10.5772/intechopen.68164.