1,077
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Interaction of Perfluorooctanoic Acid with terrestrial plants: Uptake, transfer and phytotoxicity aspects

, , , &
Pages 518-526 | Received 13 Sep 2022, Accepted 27 Oct 2022, Published online: 06 Nov 2022

References

  • Miao Y, Guo X, Dan P, et al. Rates and equilibria of perfluorooctanoate (PFOA) sorption on soils from different regions of China. Ecotoxicol Environ Saf. 2017;139:102–108.
  • Choi G-H, Lee D-Y, Song AR, et al. The dietary risk assessment of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) in the root crops from the survey of the residue in agricultural soil and the crops. Appl Biol Chem. 2022;65(60).
  • Herzke D, Huber S, Bervoets L, et al. Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ Sci Pollut Res Int. 2013;20(11):7930–7939.
  • Sznajder-Katarzynska K, Surma M, Cieslik E, et al. The perfluoroalkyl substances (PFASs) contamination of fruits and vegetables. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018;35(9):1776–1786.
  • Zhou Y, Lian Y, Sun X, et al. Determination of 20 perfluoroalkyl substances in greenhouse vegetables with a modified one-step pretreatment approach coupled with ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS-MS). Chemosphere. 2019;227:470–479.
  • Li P, Oyang X, Zhao Y, et al. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere. 2019;225:659–667.
  • Liu Z, Lu Y, Song X, et al. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: implication for planting optimization and food safety. Environ Int. 2019;127:671–684.
  • Zhu H, Kannan K. Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site. Sci Total Environ. 2019;647:954–961.
  • Yang X, Ye C, Liu Y, et al. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environ Pollut. 2015;206:560–566.
  • Huff DK, Morris LA, Sutter L, et al. Accumulation of six PFAS compounds by woody and herbaceous plants: potential for phytoextraction. Int J Phytoremediation. 2020;22(14):1538–1550.
  • Mudumbi JB, Ntwampe SK, Muganza M, et al. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation. Int J Phytoremediation. 2014;16(7–12):926–936.
  • Xiang L, Chen L, Yu LY, et al. Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils. Sci Total Environ. 2018;636:999–1008.
  • Wang TT, Ying GG, He LY, et al. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale. Sci Total Environ. 2020;733:139383.
  • Wang TT, Ying GG, Shi WJ, et al. Uptake and Translocation of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) by Wetland Plants: tissue- and Cell-Level Distribution Visualization with Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) and Transmission Electron Microscopy Equipped with Energy-Dispersive Spectroscopy (TEM-EDS). Environ Sci Technol. 2020;54(10):6009–6020.
  • Bizkarguenaga E, Zabaleta I, Prieto A, et al. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil. Chemosphere. 2016;152:309–317.
  • Yao Y, Lan Z, Zhu H, et al. Foliar uptake overweighs root uptake for 8:2 fluorotelomer alcohol in ryegrass (Lolium perenne L.): a closed exposure chamber study. Sci Total Environ. 2022;829:154660.
  • Rankin K, Lee H, Tseng PJ, et al. Investigating the biodegradability of a fluorotelomer-based acrylate polymer in a soil-plant microcosm by indirect and direct analysis. Environ Sci Technol. 2014;48(21):12783–12790.
  • Zhao S, Zhu L. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Environ Pollut. 2017;220(Pt A):124–131.
  • Martin BC, George SJ, Price CA, et al. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ. 2014;472:642–653.
  • Zhang H, Wen B, Hu X, et al. Uptake, Translocation, and Metabolism of 8:2 Fluorotelomer Alcohol in Soybean (Glycine max L.Merrill). Environ Sci Technol. 2016;50(24):13309–13317.
  • Wen B, Li L, Liu Y, et al. Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2). Plant Soil. 2013;370(1–2):345–354.
  • Wen B, Wu Y, Zhang H, et al. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ Pollut. 2016;216:682–688.
  • Chen CH, Yang SH, Liu Y, et al. Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana. Environ Pollut. 2020;259:113817.
  • Garcia-Valcarcel AI, Molero E, Escorial MC, et al. Uptake of perfluorinated compounds by plants grown in nutrient solution. Sci Total Environ. 2014;472:20–26.
  • Felizeter S, Jurling H, Kotthoff M, et al. Influence of soil on the uptake of perfluoroalkyl acids by lettuce: a comparison between a hydroponic study and a field study. Chemosphere. 2020;260:127608.
  • Zhang L, Sun H, Wang Q, et al. Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2-C8) by wheat (Triticum acstivnm L.). Sci Total Environ. 2019;654:19–27.
  • Zhang DQ, Wang M, He Q, et al. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environ Pollut. 2020;257:113575.
  • Yamazaki E, Taniyasu S, Noborio K, et al. Accumulation of perfluoroalkyl substances in lysimeter-grown rice in Japan using tap water and simulated contaminated water. Chemosphere. 2019;231:502–509.
  • Sungur Ş, Çevik B, Köroğlu M. Determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contents of compost amended soils and plants grown in these soils. Int J Environ Anal Chem. 2020;102(8):1926–1934.
  • Lechner M, Knapp H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). J Agric Food Chem. 2011;59(20):11011–11018.
  • Blaine AC, Rich CD, Sedlacko EM, et al. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ Sci Technol. 2014;48(14):7858–7865.
  • Xu Y, Du W, Yin Y, et al. CuO nanoparticles modify bioaccumulation of perfluorooctanoic acid in radish (Raphanus sativus L.). Environ Pollutants Bioavailability. 2022;34(1):34–41.
  • Liu S, Zhou J, Guo J, et al. Insights into the impacts of dissolved organic matter of different origins on bioaccumulation and translocation of per- and polyfluoroalkyl substances (PFASs) in wheat. Environ Pollut. 2022;293:118604.
  • Xiang L, Chen XT, Yu PF, et al. Oxalic acid in root exudates enhances accumulation of perfluorooctanoic acid in lettuce. Environ Sci Technol. 2020;54(20):13046–13055.
  • Knight ER, Braunig J, Janik LJ, et al. An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil - plant systems. J Hazard Mater. 2021;404(Pt B):124065.
  • Zhang L, Wang Q, Chen H, et al. Uptake and translocation of perfluoroalkyl acids with different carbon chain lengths (C2-C8) in wheat (Triticum acstivnm L.) under the effect of copper exposure. Environ Pollut. 2021;274:116550.
  • Zhang W, Zhang D, Zagorevski DV, et al. Exposure of Juncus effusus to seven perfluoroalkyl acids: uptake, accumulation and phytotoxicity. Chemosphere. 2019;233:300–308.
  • Du W, Liu X, Zhao L, et al. Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics. Sci Total Environ. 2020;724:138257.
  • Li P, Li J. Perfluorooctanoic acid (PFOA) caused oxidative stress and metabolic disorders in lettuce (Lactuca sativa) root. Sci Total Environ. 2021;770:144726.
  • Li P, Oyang X, Xie X, et al. Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics. J Hazard Mater. 2020;389:121852.
  • Pietrini F, Passatore L, Fischetti E, et al. Evaluation of morpho-physiological traits and contaminant accumulation ability in Lemna minor L. treated with increasing perfluorooctanoic acid (PFOA) concentrations under laboratory conditions. Sci Total Environ. 2019;695:133828.
  • Li P, Xiao Z, Sun J, et al. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media. Sci Total Environ. 2020;726:138382.
  • Fan L, Tang J, Zhang D, et al. Investigations on the phytotoxicity of perfluorooctanoic acid in Arabidopsis thaliana. Environ Sci Pollut Res Int. 2020;27(1):1131–1143.
  • Zhao S, Fan Z, Sun L, et al. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Ecotoxicol Environ Saf. 2017;137:194–201.
  • Zhao H, Chen C, Zhang X, et al. Phytotoxicity of PFOS and PFOA to Brassica chinensis in different Chinese soils. Ecotoxicol Environ Saf. 2011;74(5):1343–1347.
  • Zhou L, Xia M, Wang L, et al. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere. 2016;159:420–425.
  • Zhao S, Fang S, Zhu L, et al. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil. Environ Pollut. 2014;184:495–501.
  • Blaine AC, Rich CD, Sedlacko EM, et al. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ Sci Technol. 2014;48(24):14361–14368.
  • Bizkarguenaga E, Zabaleta I, Mijangos L, et al. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Sci Total Environ. 2016;571:444–451.
  • Lee D-Y, Choi G-H, Rho J-H, et al. Comparison of the plant uptake factor of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) from the three different concentrations of PFOA and PFOS in soil to spinach and Welsh onion. J Appl Biol Chem. 2020;63(3):243–248.
  • Mudumbi JBN, Daso AP, Okonkwo OJ, et al. Propensity of Tagetes erecta L., a medicinal plant commonly used in diabetes management, to accumulate pPerfluoroalkyl substances. Toxics. 2019;7(1):1.
  • Zhu J, Wallis I, Guan H, et al. Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Sci Total Environ. 2022;826:154184.
  • Abril C, Santos JL, Martin J, et al. Uptake and translocation of multiresidue industrial and household contaminants in radish grown under controlled conditions. Chemosphere. 2021;268:128823.
  • Stahl T, Heyn J, Thiele H, et al. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol. 2009;57(2):289–298.
  • Wen B, Li L, Zhang H, et al. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ Pollut. 2014;184:547–554.
  • Dalahmeh S, Tirgani S, Komakech AJ, et al. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci Total Environ. 2018;631-632:660–667.
  • Gredelj A, Nicoletto C, Valsecchi S, et al. Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with pre-contaminated soil and irrigation water. Sci Total Environ. 2020;708:134766.
  • Gredelj A, Nicoletto C, Polesello S, et al. Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): growth and developmental toxicity, comparison with growth in soil and bioavailability implications. Sci Total Environ. 2020;720:137333.
  • Li MH. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates. Environ Toxicol. 2009;24(1):95–101.
  • Li P, Xiao Z, Xie X, et al. Perfluorooctanoic acid (PFOA) changes nutritional compositions in lettuce (Lactuca sativa) leaves by activating oxidative stress. Environ Pollut. 2021;285:117246.