1,296
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Co-cultivation of microalgae growing on palm oil mill effluent under outdoor condition for lipid production

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 537-548 | Received 05 Sep 2022, Accepted 08 Nov 2022, Published online: 20 Nov 2022

References

  • Yusoff MHM, Ayoub M, Nazir MH, et al. Comprehensive review on biodiesel production from palm oil mill effluent. Chem Bio Eng Reviews. 2021;8(5):439–462.
  • Farobie O, Hartulistiyoso E. Palm oil biodiesel as a renewable energy resource in indonesia: current status and challenges. Bioenergy Res. 2022;15(1):93–111.
  • Uning R, Latif MT, Othman M, et al. A review of Southeast Asian oil palm and Its CO2 fluxes. Sustain. 2020;12(12):5077.
  • Saputera WH, Amri AF, Daiyan R, et al. Photocatalytic technology for palm oil mill effluent (POME) wastewater treatment: current progress and future perspective. Materials. 2021;14(11):2846.
  • Ahmad AL, Ismail S, Bhatia S. Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination. 2003;157(1–3):87–95.
  • Ratnasari A, Zaidi NS, Syafiuddin A, et al. Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresour Technol Rep. 2021;15:1–11.
  • Dominic D, Baidurah S. Recent developments in biological processing technology for palm oil mill effluent treatment—A review. Biology (Basel). 2022;11(4):525.
  • Nur MMA. Co-production of fucoxanthin and lipid from Indonesian diatom and green algae growing on palm oil mill effluent under mixotrophic condition. Biocat Agric Biotechnol. 2021; 38:102228.
  • Nur MMA. Co-production of polyhydroxybutyrate and C-phycocyanin from Arthrospira platensis growing on palm oil mill effluent by employing UV-C irradiation. J Appl Phycol. 2022;34:1389–1396.
  • Nur MMA, Swaminathan MK, Boelen P, et al. Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. J Appl Phycol. 2019;31(4):2335–2348.
  • Nur MMA, Buma AG. Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valorization. 2019;10(8):2079–2097.
  • Acién G LT, Acién G. Microalgae for the food industry: from biomass production to the development of functional foods. Foods. 2022;11(5):765.
  • Sirohi R, Choi HI, Sim SJ. Microalgal fuels: promising energy reserves for the future. Fuel. 2022;312:1–11.
  • Rizwan M, Mujtaba G, Memon SA, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394–404.
  • Bhatia SK, Mehariya S, Bhatia RK, et al. Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ. 2021;751:141599.
  • Palanisamy KM, Maniam GP, Sulaiman AZ, et al. Palm oil mill effluent for lipid production by the diatom Thalassiosira pseudonana. Fermentation. 2022;8(1):23.
  • Resdi R, Lim JS, Idris A. Batch kinetics of nutrients removal for palm oil mill effluent and recovery of lipid by Nannochloropsis sp. J Water Process Eng. 2021;40:101767.
  • Kamyab H, Chelliapan S, Lee CT, et al. Improved production of lipid contents by cultivating Chlorella pyrenoidosa in heterogeneous organic substrates. Clean Technol Envir. 2019;21(10):1969–1978.
  • Vairappan CS, Yen AM. Palm oil mill effluent (POME) cultured marine microalgae as supplementary diet for rotifer culture. J Appl Phycol. 2008;20(5):603–608.
  • Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci Total Environ. 2019;687:687 1107–1126.
  • Pessi BA, Pruvost E, Talec A, et al. Does temperature shift justify microalgae production under greenhouse? Algal Res. 2022;61:1–10.
  • Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: a greener strategy towards sustainable biofuels production. Sci Total Environ. 2022;802:149765.
  • Maryjoseph S, Ketheesan B. Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. Case Studies Chem Enviro Eng. 2020;2:1–10.
  • Nie X, Mubashar M, Zhang S, et al. Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: a comprehensive review. J Clean Prod. 2020;277:124209.
  • Caroppo C, Pagliara P. Microalgae: a Promising Future. Microorganisms. 2022;10(8):1488.
  • Chu R, Li S, Zhu L, et al. A review on co-cultivation of microalgae with filamentous fungi: efficient harvesting, wastewater treatment and biofuel production. Renewable Sustainable Energy Rev. 2021;139:110689.
  • Das PK, Rani J, Rawat S, et al. Microalgal co-cultivation for biofuel production and bioremediation: current status and benefits. Bioenergy Res. 2022;15(1):1–26.
  • Arutselvan C, Narchonai G, Pugazhendhi A, et al. Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresour Technol. 2021;339:125524.
  • Azarpour A, Zendehboudi S, Mohammadzadeh O, et al. A review on microalgal biomass and biodiesel production through Co-cultivation strategy. Energy Convers Manag. 2022;267:1–35.
  • Nur MM, Garcia GM, Boelen P, et al. Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode. J Appl Phycol. 2019;31(5):2855–2867.
  • Tompkins J, de Ville MM, Day JG, et al. Culture Collection of Algae & Protozoa: Catalogue of Strains. Kendal, UK: Titus Wilson and Son Ltd.; 1995.
  • Guillard RR. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. Boston MA: Springer; 1975. p. 29–60.
  • Zarrouk C (1966) Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.
  • Nur MM, Garcia GM, Boelen P, et al. Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis. J Appl Phycol. 2021;33(2):901–915.
  • Axelsson M, Gentili F, Kusano M. A single-step method for rapid extraction of total lipids from green microalgae. PloS one. 2014;9(2):e89643.
  • Boelen P, Van Mastrigt A, Van De Bovenkamp HH, et al. Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. Aquac Int. 2017;25(2):577–587.
  • Teoh ML, Phang SM, Chu WL. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol. 2013;25(1):285–297.
  • Mattsson L, Sörenson E, Capo E, et al. Functional diversity facilitates stability under environmental changes in an outdoor microalgal cultivation system. Front Bioeng Biotechnol. 2021;9. DOI:10.3389/fbioe.2021.651895
  • Stirk WA, Bálint P, Maróti G, et al. Comparison of monocultures and a mixed culture of three Chlorellaceae strains to optimize biomass production and biochemical content in microalgae grown in a greenhouse. J Appl Phycol. 2021;33(5):2755–2766.
  • Zhao P, Yu X, Li J, et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng. 2014;118(1):72–77.
  • Tejido-Nuñez Y, Aymerich E, Sancho L, et al. Co-cultivation of microalgae in aquaculture water: interactions, growth and nutrient removal efficiency at laboratory-and pilot-scale. Algal Res. 2020;49:1–8.
  • Ishika T, Moheimani NR, Bahri PA. Sustainable saline microalgae co-cultivation for biofuel production: a critical review. Renew Sust Energ Rev. 2017;78:356–368.
  • Jasni J, Arisht SN, Yasin NHM, et al. Comparative toxicity effect of organic and inorganic substances in palm oil mill effluent (POME) using native microalgae species. J Water Process Eng. 2020;34:101165.
  • Sabilil MS, Agus SE. Biomass Composition of Microalgae Local Mixed Culture using POME (Palm Oil Mill Effluent) Medium. Res J Biotechnol. 2021;16:5.
  • Luo Y, Le-Clech P, Henderson RK. Characterisation of microalgae-based monocultures and mixed cultures for biomass production and wastewater treatment. Algal Res. 2020;49:1–10.
  • Shi TQ, Wang LR, Zhang ZX, et al. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioeng Biotechnol. 2020;8:610.
  • Shigetomi Y, Ishimura Y, Yamamoto Y. Trends in global dependency on the Indonesian palm oil and resultant environmental impacts. Sci Rep. 2020;10(1):1–11.
  • Qu Z, Duan P, Cao X, et al. Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production. Environ Sci Pollut Res. 2019;26(20):20961–20968.
  • Sivaramakrishnan R, Suresh S, Pugazhendhi A, et al. Response of Scenedesmus sp. To microwave treatment: enhancement of lipid, exopolysaccharide and biomass production. Bioresour Technol. 2020;312:123562.
  • Feng Y, Xiao J, Cui N, et al. Enhancement of Lipid Productivity and Self-flocculation by Cocultivating Monoraphidium sp. FXY-10 and Heveochlorella sp. Yu Under Mixotrophic Mode. Appl Biochem Biotechnol. 2021;193(10):3173–3186.
  • Vyas S, Patel A, Risse EN, et al. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Bioresour Technol. 2022;359:127494.
  • Montero E, Olguín EJ, De Philippis R, et al. Mixotrophic cultivation of Chlorococcum sp. Under non-controlled conditions using a digestate from pig manure within a biorefinery. J Appl Phycol. 2018;30(5):2847–2857.
  • Rashid N, Ryu AJ, Jeong KJ, et al. Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energy Convers Manag. 2019;196:640–648.
  • Krzemińska I, Oleszek M. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production. Biores Technol. 2016;218:1294–1297.
  • Zheng Y Yu L Chen S LT, Zheng Y, Yu L. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioener. 2014; 66:204–213.
  • Huang J Sun Z Zhong Y Jiang Y Chen F LJ, Huang J, Sun Z. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol. 2011;102(1):106–110.
  • Guihéneuf F, Stengel DB. LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs. 2013;11(11):4246–4266.
  • Liu W, Huang Z, Li P, et al. Formation of triacylglycerol in Nitzschia closterium f. Minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. J Exp Mar Biol Ecol. 2012;418:24–29.
  • Zarrinmehr MJ, Farhadian O, Heyrati FP, et al. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egyptian Jaquatic Res. 2020;46(2):153–158.
  • Mohsenpour SF, Richards B, Willoughby N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol. 2012;125:75–81.
  • Kamyab H, Din MFM, Keyvanfar A, et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 2015;75:2400–2408.
  • Shah SMU, Ahmad A, Othman MF, et al. Effects of palm oil mill effluent media on cell growth and lipid content of Nannochloropsis oculata and Tetraselmis suecica. Int J Green Energy. 2016;13(2):200–207.
  • Cheah WY, Show PL, Yap YJ, et al. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered. 2020;11(1):61–69.
  • Cheah WY, Show PL, Juan JC, et al. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Convers Manag. 2018a;174:430–438.
  • Cheah WY, Show PL, Juan JC, et al. Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Convers Manag. 2018b;164:188–197.