788
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Accumulation and health implications of arsenic, mercury, and selenium in selected freshwater fish species in the uMgeni River, South Africa

, , &
Article: 2296973 | Received 20 Oct 2023, Accepted 14 Dec 2023, Published online: 28 Dec 2023

References

  • Bashir I, Lone F, Bhat R, et al. Concerns and threats of contamination on aquatic ecosystems. In: Hakeem K, Bhat R, Qadri H, editors. Bioremediation and biotechnology Springer nature. https://doi.org/10.1007/978-3-030-35691-0_12020.
  • Lin L, Yang H, Xu X. Effects of water pollution on human health and disease heterogeneity: a review frontiers in environmental science. Front Environ Sci. 2022;10:10. doi:10.3389/fenvs.2022.880246.
  • Bawuro AA, Voegborlo RB, Adimado AA. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State. J Environ Public Health. 2018;2018:1–63. doi: 10.1155/2018/1854892
  • Al Osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children biometals. Biometals. 2019;32(4):32563–32573. doi: 10.1007/s10534-019-00193-5
  • Marr SM, Lebepe J, Steyl JCA, et al. Bioaccumulation of selected metals in the gill, liver and muscle tissue of rednose labeo labeo rosae from two impoundments on the Olifants River, Limpopo river system. Afr J Aquat Sci. 2017;42(2):123–130. doi: 10.2989/16085914.2017.1351915
  • Ponton DE, Ruelas-Inzunza J, Lavoie RA, et al. Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. J Hazard Mater Adv. 2022;6:6100060. doi: 10.1016/j.hazadv.2022.100060
  • Lescord GL, Johnston TA, Heerschap MJ, et al. Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: drivers of variation and implications for subsistence consumption environmental pollution. Environ Pollut. 2020;259:259113878. doi: 10.1016/j.envpol.2019.113878
  • Kortei NK, Heymann ME, Essuman EK, et al. Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: impact of illegal mining activities on food safety toxicology reports. 2020;7360–7369.
  • Chollom MN, Adeyinka GC, Bakare BF. Investigating the current trend of selected heavy metal pollution with possible ecological and human health effects along the uMgeni River of KwaZulu-Natal. Int J Environ Anal Chem. 2023;1–19. doi: 10.1080/03067319.2023.2235289
  • Adegbola IP, Aborisade BA, Adetutu A. Health risk assessment and heavy metal accumulation in fish species (Clarias gariepinus and sarotherodon melanotheron) from industrially polluted ogun and eleyele rivers. Toxicol Rep. 2021;8:81445–81460. doi: 10.1016/j.toxrep.2021.07.007
  • Canham R, González‐Prieto AM, Elliott JE. Mercury exposure and toxicological consequences in fish and fish‐eating wildlife from anthropogenic activity in Latin America. Integr Environ Assess Manag. 2021;17(1):13–26. doi: 10.1002/ieam.4313
  • Nyholt K, Jardine TD, Villamarín F, et al. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs science of the total environment. Sci Total Environ. 2022;833:833155161. doi: 10.1016/j.scitotenv.2022.155161
  • Papu-Zamxaka V, Mathee A, Harpham T, et al. Elevated mercury exposure in communities living alongside the Inanda Dam. J Environ Monitor. 2010;12(2):472–477. doi: 10.1039/B917452D
  • Du S, Zhou Y, Zhang L. The potential of arsenic biomagnification in marine ecosystems: a systematic investigation in Daya Bay in China science of the total environment. Sci Total Environ. 2021;773145068:145068. doi: 10.1016/j.scitotenv.2021.145068
  • Barone G, Storelli A, Meleleo D, et al. Levels of mercury, methylmercury and selenium in fish: insights into children food safety toxics. Toxics. 2021;9(2):39. doi: 10.3390/toxics9020039
  • Li X, Xing M, Chen M, et al. Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils ecotoxicology and environmental safety. Ecotoxicol Environ Saf. 2017;139:139447–139453. doi: 10.1016/j.ecoenv.2017.02.017
  • Heath R, Du Preez H, Genthe B, et al. Freshwater fish and human health reference guide: WRC report no TT213/04. Pretoria: Water Research Commission; 2004.
  • Agunbiade FO, Moodley B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal. Environ Monit Assess. 2014;186(11):7273–7291. doi: 10.1007/s10661-014-3926-z
  • DWS. State of the rivers report, uMgeni River and neighbouring rivers and streams. 2023 [cited 2023 Oct]. Available from: https://www.dws.gov.za/iwqs/rhp/state_of_rivers/state_of_umngeni_02/fish.html
  • Impson N, Bills I, Wolhuter L. Technical report on the state of yellowfishes in South Africa. Pretoria: Water Research Commission; 2008. (WRC Report No. KV 212/08).
  • Olaniran AO, Naicker K, Pillay B. Assessment of physico-chemical qualities and heavy metal concentrations of Umgeni and Umdloti Rivers in Durban. Environ Monit Assess. 2014;186(4):2629–2639. doi: 10.1007/s10661-013-3566-8
  • WRC. State-of-rivers report uMngeni River and neighbouring rivers and streams. Pretoria: Water Research Commission; 2002. (WRC report no.TT 200/02).
  • Adams S, Brown A, Goede R. A quantitative health assessment index for rapid evaluation of fish condition in the field transactions of the American fisheries society. Trans Am Fish Soc. 1993;122(1):12263–12273. doi: 10.1577/1548-8659(1993)122<0063:AQHAIF>2.3.CO;2
  • US-EPA. Guidance for assessing chemical contaminant data for use in fish advisories. Washington DC: Diane Publishing; 2000. (Report No. EPA-823-B-00-008). p.156.
  • Burger J, Gochfeld M. Selenium and mercury molar ratios in commercial fish from new jersey and Illinois: variation within species and relevance to risk communication food and chemical toxicology. Food Chem Toxicol. 2013;57:57235–57245. doi: 10.1016/j.fct.2013.03.021
  • CCME. Canadian water quality guidelines for the protection of aquatic life. Introduction. Canada: Canadian environmental quality guidelines; [cited 2019 Sep 9]. Available from: http://st-ts.ccme.ca/en/index.html2012
  • DWAF. South African water quality guideline: volume 7, aquatic ecosystem. 2nd ed. Pretoria: Department of Water Affairs and Forestry; 1996.
  • MacDonald DD, Ingersoll CG, Berger T. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems archives of environmental contamination and toxicology. Arch Environ Contam Toxicol. 2000;39(1):20–31. doi: 10.1007/s002440010075
  • JECFA. Limit test for heavy metals in food additive specifications. FAO/WHO expert committee on food additives. 2002 [cited 2017 Dec 2]. Available from: http://www.fao.org/fileadmin/templates/agns/pdf/jecfa/2002-09-10_Explanatory_note_Heavy_Metals.pdf.
  • MOHSAC. China, peoples Republic of China’s maximum levels of contaminants in foods. Beijing (China): USDA Foreign Agricultural Service; 2006. (GAIN Report No. CH6064). p 11.
  • FDA. Technical information on development of FDA/EPA advice about eating fish for those who might become or are pregnant or breastfeeding and children ages 1-11 years. 2022 [cited 2023 Jun 22]. Available from: https://www.fda.gov/food/environmental-contaminants-food/technical-information-development-fdaepa-advice-about-eating-fish-those-who-might-become-or-are#:~:text=a%20week%E2%80%9D%20category.-,Highest%20allowable%20average%20mercury%20concentration%20in%20fish%20per%20serving%20when,week%20%3D%200.23%20%C2%B5g%2Fg.
  • Huang J, Yuan F, Zeng G, et al. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration chemosphere. Chemosphere. 2017;173:173199–173206. doi: 10.1016/j.chemosphere.2016.12.137
  • Park SM, Yoo JC, Ji SW, et al. Selective recovery of dissolved fe, al, cu, and zn in acid mine drainage based on modeling to predict precipitation pH. Environ Sci Pollut Res. 2015;22:3013–3022.
  • Lebepe J, Oberholster PJ, Ncube I, et al. Metal levels in two fish species from a waterbody impacted by metallurgic industries and acid mine drainage from coal mining in South Africa. J Environ Sci Health A. 2020;55(4):421–32. doi: 10.1080/10934529.2019.1704604
  • Gomes DF, da Silva Pinto TJ, Raymundo LB, et al. Ecological risk assessment for metals in sediment and waters from the Brazilian Amazon region chemosphere. Chemosphere. 2023;345140413:140413. doi: 10.1016/j.chemosphere.2023.140413
  • Pandiyan J, Mahboob S, Govindarajan M, et al. An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: a perspective of tackling environmental threats for food security. Saudi J Biol Sci. 2021;28(2):1218–1225. doi: 10.1016/j.sjbs.2020.11.072
  • Dash S, Borah SS, Kalamdhad AS. Heavy metal pollution and potential ecological risk assessment for surficial sediments of deepor beel. Ecol Indic. 2021;122:122107265. doi: 10.1016/j.ecolind.2020.107265
  • Adams W, Blust R, Dwyer R, et al. Bioavailability assessment of metals in freshwater environments: a historical review environmental toxicology and chemistry. Environ Toxicol Chem. 2020;39(1):48–59. doi: 10.1002/etc.4558
  • Akhbarizadeh R, Moore F, Keshavarzi B. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of persian gulf environmental pollution. Environ Pollut. 2018;232:232154–232163. doi: 10.1016/j.envpol.2017.09.028
  • Ouahb S, Bousseba M, Ferraj L, et al., editors. Weight-length relationship and relative condition factor of Micropterus salmoides (Lacépède, 1802), Cyprinus carpio (Linneaus, 1758) and Oreochromis niloticus (Linnaeus, 1758) caught in the al-Massira Dam Lake. E3S Web of Conferences, Kenitra, Morocco: EDP Sciences; 2021.
  • Radhi AM, Fazlinda MFN, Amal MNA, et al. A review of length-weight relationships of freshwater fishes in Malaysia. Transylv Rev Syst Ecol Res. 2018;20(1):55–68. doi: 10.1515/trser-2018-0005
  • Kassegne A, Berhanu T, Okonkwo J, et al. Assessment of trace metals in water samples and tissues of African catfish (Clarias gariepinus) from the Akaki River catchment and the Aba Samuel Reservoir. Afr J Aquat Sci. 2019;44(4):389–399. doi: 10.2989/16085914.2019.1671164
  • Jisr N, Younes G, Sukhn C, et al. Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city. Egypt J Aquat Res. 2018;44(4):299–305. doi: 10.1016/j.ejar.2018.11.004
  • Nieto-Navarro JT, Zetina-Rejón M, Aguerrin-Sanchez F, et al. Length-weight relationship of demersal fish from the eastern coast of the mouth of the gulf of Califonia. J Fish Aquat Sci. 2010;5(6):494–502. doi: 10.3923/jfas.2010.494.502
  • Barnham CA, Baxter AF. Condition factor, K, for salmonid fish. Victoria: Department of Primary Industries; 2003.
  • Jenkins JA. Fish bioindicators of ecosystem condition at the calcasieu estuary. Louisiana: National Wetlands Research Center, Lafayette; 2004. p. 54.
  • Jan M, Jan N. Studies on the Fecundity (F), Gonadosomatic Index (GSI) and Hepatosomatic Index (HSI) of Salmo trutta fario (Brown trout) at Kokernag trout fish farm. Int J Fish Aquat Stud. 2017;5(6):170–173.
  • Badamasi I, Odong R, Masembe C. Implications of increasing pollution levels on commercially important fishes in Lake Victoria. J Great Lakes Res. 2019;45(6):1274–1289. doi: 10.1016/j.jglr.2019.09.024
  • Tinggi U, Perkins AV. Selenium status: its interactions with dietary mercury exposure and implications in human health. Nutrients. 2022;14(24):5308. doi: 10.3390/nu14245308
  • Schrauzer GN. Selenium and selenium-antagonistic elements in nutritional cancer prevention critical reviews in biotechnology. Crit Rev Biotechnol. 2009;29(1):10–17. doi: 10.1080/07388550802658048
  • Regnell O, Tesson SVM, Oskolkov N, et al. Mercury–selenium accumulation patterns in muscle tissue of two freshwater fish species, eurasian perch (perca fluviatilis) and vendace (coregonus albula). Water Air Soil Pollut. 2022;233(7):236. doi: 10.1007/s11270-022-05709-3
  • Muscatello JR, Janz D. Selenium accumulation in aquatic biota downstream of a uranium mining and milling operation science of the total environment. Sci Total Environ. 2009;407(4):1318–1325. doi: 10.1016/j.scitotenv.2008.10.046
  • Kim JH, Kang JC. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, pagrus major, exposed to waterborne selenium ecotoxicology and environmental safety. Ecotoxicol Environ Saf. 2014;104:96–102. doi: 10.1016/j.ecoenv.2014.02.010
  • Squadrone S, Benedetto A, Brizio P, et al. Mercury and selenium in European catfish (silurus glanis) from Northern Italian rivers: can molar ratio be a predictive factor for mercury toxicity in a top predator? Chemosphere. 2015;119:11924–11930. doi: 10.1016/j.chemosphere.2014.05.052
  • Johnson T, LePrevost C, Kwak T, et al. Selenium, mercury, and their molar ratio in sportfish from drinking water reservoirs. Int J Environ Res Public Health. 2018;15(9):1864. doi: 10.3390/ijerph15091864
  • Okati N, Shahriari Moghadam M, Einollahipeer F. Mercury, arsenic and selenium concentrations in marine fish species from the Oman Sea. Toxicol Environ Health Sci. 2021;13(1):25–36. doi: 10.1007/s13530-020-00062-6
  • Plessl C, Gilbert BM, Sigmund MF, et al. Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers science of the total environment. Sci Total Environ. 2019;659:6591158–6591167. doi: 10.1016/j.scitotenv.2018.12.442
  • Kumar S, Raman RK, Talukder A, et al. Arsenic bioaccumulation and identification of low-Arsenic-accumulating food fishes for aquaculture in arsenic-contaminated ponds and associated aquatic ecosystems biological trace element research. Biol Trace Element Res. 2022;200(6):2923–2936. doi: 10.1007/s12011-021-02858-0
  • Mannzhi MP, Edokpayi JN, Durowoju OS, et al. Assessment of selected trace metals in fish feeds, pond water and edible muscles of Oreochromis mossambicus and the evaluation of human health risk associated with its consumption in Vhembe district of Limpopo province. South Afri Toxicol Rep. 2021;8:8705–8717. doi: 10.1016/j.toxrep.2021.03.018
  • Hao Y, Miao X, Song M, et al. The bioaccumulation and health risk assessment of metals among two most consumed species of angling fish (Cyprinus carpio and pseudohemiculter dispar) in Liuzhou (China): Winter should be treated as a suitable season for. Int J Environ Res Public Health. 2022;19(3):1519. doi: 10.3390/ijerph19031519
  • Gilbert BM, Hussain E, Jirsa F, et al. Evaluation of trace element and metal accumulation and edibility risk associated with consumption of labeo umbratus from the Vaal Dam. Int J Environ Res Public Health. 2017;14(7):678–693. doi: 10.3390/ijerph14070678
  • Williams CR, Leaner JJ, Somerset VS, et al. Mercury concentrations at a historically mercury-contaminated site in KwaZulu-Natal (South Africa). Environ Sci Pollut Res. 2011;18(7):1079–1089. doi: 10.1007/s11356-011-0458-8
  • Hošek M, Bednárek J, Popelka J, et al. Persistent mercury hot spot in central Europe and Skalka Dam reservoir as a long-term mercury trap. Environ Geochem Health. 2020;42(5):1273–1290. doi: 10.1007/s10653-019-00408-1
  • Zupo V, Graber G, Kamel S, et al. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds environmental pollution. Environ Pollut. 2019;255112975:112975. doi: 10.1016/j.envpol.2019.112975
  • Zhang H, Wang W, Lin C, et al. Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China. China Eco Environ Health. 2022;1(1):46–52. doi: 10.1016/j.eehl.2022.04.002
  • van Rooyen D, Erasmus JH, Gerber R, et al. Bioaccumulation and trophic transfer of total mercury through the aquatic food webs of an African sub-tropical wetland system science of the total environment. Sci Total Environ. 2023;889:889164210. doi: 10.1016/j.scitotenv.2023.164210
  • Pavla S, Danka H, Premysl M, et al. Do the total mercury concentrations detected in fish from Czech ponds represent a risk for consumers? Sci Rep. 2022;12(1):553. doi: 10.1038/s41598-021-04561-5
  • Barwick M, Maher W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary. NSW, Au Mar Environ Res. 2003;56(4):471–502. doi: 10.1016/S0141-1136(03)00028-X
  • Økelsrud A, Lydersen E, Fjeld E. Biomagnification of mercury and selenium in two lakes in southern Norway science of the total environment. Sci Total Environ. 2016;566-567:596–607. doi: 10.1016/j.scitotenv.2016.05.109
  • Mathews TJ, Fortner AM, Jett RT, et al. Selenium bioaccumulation in fish exposed to coal ash at the Tennessee valley Authority Kingston spill site environmental toxicology and chemistry. Environ Toxicol Chem. 2014;33(10):2273–9. doi: 10.1002/etc.2673
  • Ouédraogo O, Chételat J, Amyot M, et al. Bioaccumulation and trophic transfer of mercury and selenium in African sub-tropical fluvial reservoirs food webs (Burkina Faso). PLoS One. 2015;10(4):e0123048. doi: 10.1371/journal.pone.0123048
  • Dovick MA, Kulp TR, Arkle RS, et al. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage environmental chemistry. Environ Chem. 2015;13(1):149–159. doi: 10.1071/EN15046
  • Authman MM, Zaki MS, Khallaf EA, et al. Use of fish as bio-indicator of the effects of heavy metals pollution. J Aquacult Res Dev. 2015;6(4):1–13. doi: 10.4172/2155-9546.1000328
  • Córdoba-Tovar L, Marrugo-Negrete J, Barón PR, et al. Drivers of biomagnification of Hg, as and Se in aquatic food webs: a review environmental research. Environ Res. 2022;204112226:112226. doi: 10.1016/j.envres.2021.112226
  • Jiang X, Wang J, Pan B, et al. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: effects of feeding habits, habitat preferences and body size. J Environ Sci. 2022;112:112355–112365. doi: 10.1016/j.jes.2021.05.004
  • Balzani P, Kouba A, Tricarico E, et al. Metal accumulation in relation to size and body condition in an all-alien species community. Environ Sci Pollut Res. 2022;29(17):25848–25857. doi: 10.1007/s11356-021-17621-0
  • Yi Y, Zhang S. The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River procedia environmental sciences. Procedia Environ Sci. 2012;13:131699–131707. doi: 10.1016/j.proenv.2012.01.163
  • Miklavčič A, Casetta A, Tratnik SJ, et al. Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area environmental research. Environ Res. 2013;120:1207–1217. doi: 10.1016/j.envres.2012.08.010.
  • Burger J, Gochfeld M, Jeitner C, et al. Selenium: mercury molar ratios in freshwater fish from tennessee: individual, species, and geographical variations have implications for management. Ecohealth. 2012;9(2):171–182. doi: 10.1007/s10393-012-0761-y
  • Roberts R. Fish pathology. 4th ed. Oxford: Blackwell Publishing Ltd; 2012.
  • Chan WS, Routh J, Luo C, et al. Metal accumulations in aquatic organisms and health risks in an acid mine-affected site in South China. Environ Geochem Health. 2021;43(11):4415–40. doi: 10.1007/s10653-021-00923-0
  • Jooste A, Marr S, Addo-Bediako A, et al. Metal bioaccumulation in the fish of the Olifants River, Limpopo province, South Africa, and the associated human health risk: a case study of rednose labeo labeo rosae from two impoundments. Afr J Aquat Sci. 2014;39(3):391–397. doi: 10.2989/16085914.2014.945989
  • Gilbert B, Avenant-Oldewage A. Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks. WSA. 2014;40(4):739–748. doi: 10.4314/wsa.v40i4.19
  • Hull EA, Barajas M, Burkart KA, et al. Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. Sci Total Environ. 2021;770145318:145318. doi: 10.1016/j.scitotenv.2021.145318
  • Amqam H, Thalib D, Anwar D, et al. Human health risk assessment of heavy metals via consumption of fish from Kao Bay. Rev Environ Health. 2020;35(3):257–263. doi: 10.1515/reveh-2020-0023
  • Budnik LT, Casteleyn L. Mercury pollution in modern times and its socio-medical consequences science of the total environment. Sci Total Environ. 2019;654:654720–654734. doi: 10.1016/j.scitotenv.2018.10.408
  • Castilhos ZC, Rodrigues-Filho S, Rodrigues APC, et al. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment science of the total environment. Sci Total Environ. 2006;368(1):320–325. doi: 10.1016/j.scitotenv.2006.01.039
  • Addo-Bediako A, Marr SM, Jooste A, et al. Are metals in the muscle tissue of Mozambique tilapia a threat to human health? A case study of two impoundments in the Olifants River, Limpopo province, South Africa. Ann Limnol - Int J Lim. 2014;50(3):201–210. doi: 10.1051/limn/2014091
  • Jooste A, Marr S, Addo-Bediako A, et al. Sharptooth catfish shows its metal: a case study of metal contamination at two impoundments in the Olifants River, Limpopo River system. Ecotoxicol Environ Saf. 2015;112:96–104. doi: 10.1016/j.ecoenv.2014.10.033
  • Vinceti M, Filippini T, Wise LA. Environmental selenium and human health: an update. Curr Environ Health Rep. 2018;5(4):464–485. doi: 10.1007/s40572-018-0213-0
  • Hadrup N, Ravn-Haren G. Acute human toxicity and mortality after selenium ingestion: a review. J Trace Elem Med Biol. 2020;58:58126435. doi: 10.1016/j.jtemb.2019.126435
  • MacFarquhar JK, Broussard DL, Melstrom P, et al. Acute selenium toxicity associated with a dietary supplement archives of internal medicine. Arch Internal Med. 2010;170(3):256–261. doi: 10.1001/archinternmed.2009.495
  • Rajeshkumar S, Li X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake. China Toxicol Rep. 2018;5:5288–5295. doi: 10.1016/j.toxrep.2018.01.007