357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric barrier discharge combined with Fe(III)-NTA activated persulfate for efficient degradation of enrofloxacin in water

, &
Article: 2319250 | Received 02 Jan 2024, Accepted 12 Feb 2024, Published online: 20 Feb 2024

References

  • Shao B, Don H, Feng L, et al. Influence of sulfite/Fe(VI) molar ratio on the active oxidants generation in Fe(VI)/sulfite process. J Hazard Mater. 2020;384:121303. doi: 10.1016/j.jhazmat.2019.121303
  • Orimolade BO, Oladipo AO, Idris AO, et al. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: a review. Sci Total Environ. 2023;881:163522. doi: 10.1016/j.scitotenv.2023.163522
  • Rico A, Satapornvanit K, Haque MM, et al. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev Aquacult. 2012;4(2):75–166. doi: 10.1111/j.1753-5131.2012.01062.x
  • Thiele-Bruhn S, Beck IC. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere. 2005;59(4):457–465. doi: 10.1016/j.chemosphere.2005.01.023
  • Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents. 2000;16(1):5–15. doi: 10.1016/S0924-8579(00)00192-8
  • Reemtsma T, Weiss S, Mueller J, et al. Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol. 2006;40(17):5451–5458. doi: 10.1021/es060908a
  • Shah NS, Rizwan AD, Khan JA, et al. Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes. Process Saf Environ Prot. 2018;117:473–482. doi: 10.1016/j.psep.2018.05.020
  • Wang J, Liu H, Ma D, et al. Degradation of organic pollutants by ultraviolet/ozone in high salinity condition: non-radical pathway dominated by singlet oxygen. Chemosphere. 2021;268:128796. doi: 10.1016/j.chemosphere.2020.128796
  • Topkaya E, Konyar M, Yatmaz HC, et al. Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. J Colloid Interface Sci. 2014;430:6–11. doi: 10.1016/j.jcis.2014.05.022
  • Dai J, Feng H, Shi K, et al. Electrochemical degradation of antibiotic enoxacin using a novel PbO2 electrode with a graphene nanoplatelets inter-layer: characteristics, efficiency and mechanism. Chemosphere. 2022;307:135833. doi: 10.1016/j.chemosphere.2022.135833
  • Huang Y, Xie Q, Wang H, et al. Degradation of trimethoprim in the simulated solar light/periodate system: process and mechanism analysis. Water Proc Eng. 2024;57:104726. doi: 10.1016/j.jwpe.2023.104726
  • Furman OS, Teel AL, Watts RJ. Mechanism of base activation of persulfate. Environ Sci Technol. 2010;44(16):6423–6428. doi: 10.1021/es1013714
  • Wang H, Mustafa M, Yu G, et al. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere. 2019;235:575–585. doi: 10.1016/j.chemosphere.2019.06.205
  • Malato S, Fernández-Ibáñez P, Maldonado MI, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today. 2009;147(1):1–59. doi: 10.1016/j.cattod.2009.06.018
  • Guo H, Jiang N, Wang H, et al. Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system. Appl Catal B-Environ. 2019;248:552–566. doi: 10.1016/j.apcatb.2019.01.052
  • Dong B, Li Z, Wang P, et al. Dielectric barrier discharge plasma-coupled rare-earth modified Er3±BiOI catalytic materials for degradation of organic pollutant benzohydroxamic acid in mineral beneficiation waster: performance, degradation pathway, and its mechanism. Water Proc Eng. 2023;56:104393. doi: 10.1016/j.jwpe.2023.104393
  • Cao Z, Zhao L, Sun Y, et al. Simultaneous removal of enrofloxacin and Cr(VI) using uniaxial wet wall dielectric barrier discharge plasma. J Clean Prod. 2022;379:134800. doi: 10.1016/j.jclepro.2022.134800
  • Wu Y, Cheng J-H, Keener KM, et al. Inhibitory effects of dielectric barrier discharge cold plasma on pathogenic enzymes and anthracnose for mango postharvest preservation. Postharvest Biol Technol. 2023;196:112181. doi: 10.1016/j.postharvbio.2022.112181
  • Crema APS, Borges LDP, Micke GA, et al. Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: a comparative study and by-product identification. Chemosphere. 2020;244:125502. doi: 10.1016/j.chemosphere.2019.125502
  • Xin L, Sun Y, Feng J. Ag3PO4/TiO2-assisted degradation of malachite green in aqueous solution treated by dielectric barrier discharge plasma. J Chem Technol Biot. 2016;91(7):2131–2142. doi: 10.1002/jctb.4840
  • Cao Y, Qu G, Li T, et al. Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer. Plasma Sci Technol. 2018;20(10):103001. doi: 10.1088/2058-6272/aacff4
  • Li X, Jie B, Lin H, et al. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOcs): recent advances and prospects. J Environ Manage. 2022;308:114664. doi: 10.1016/j.jenvman.2022.114664
  • Yaoyao J, Xiaoning W, Sheng-Peng S, et al. Hydroxyl and sulfate radicals formation in UVA/FeIII-NTA/S2O82- system: mechanism and effectiveness in carbamazepine degradation at initial neutral pH. Chem Eng J. 2019;368:541–552. doi: 10.1016/j.cej.2019.02.182
  • Shang K, Li W, Wang X, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep Purif Technol. 2019;218:106–112. doi: 10.1016/j.seppur.2019.02.046
  • Dao YH, De Laat J. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Water Res. 2011;45(11):3309–3317. doi: 10.1016/j.watres.2011.03.043
  • Jin Y, Sun S-P, Yang X, et al. Degradation of ibuprofen in water by FeII-NTA complex-activated persulfate with hydroxylamine at neutral pH. Chem Eng J. 2018;337:152–160. doi: 10.1016/j.cej.2017.12.094
  • Abida O, Mailhot G, Litter M, et al. Impact of iron-complex (Fe(iii)–NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution. Photochem Photobiol Sci. 2006;5(4):395–402. doi: 10.1039/b518211e
  • Yang Y, Pignatello JJ, Ma J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ Sci Technol. 2014;48(4):2344–2351. doi: 10.1021/es404118q
  • George C, El Rassy H, Chovelon JM. Reactivity of selected volatile organic compounds (VOCs) toward the sulfate radical (SO4−). Int J Chem Kinet. 2001;33(9):539–547. doi: 10.1002/kin.1049
  • Scire S, Minico S, Crisafulli C, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl Catal B-Environ. 2003;40(1):43–49. doi: 10.1016/S0926-3373(02)00127-3
  • Yuan D, Zhang C, Tang S, et al. Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment. Water Res. 2019;163:114861. doi: 10.1016/j.watres.2019.114861
  • Liang C, Liang C-P, Chen C-C. PH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J Contam Hydrol. 2009;106(3–4):173–182. doi: 10.1016/j.jconhyd.2009.02.008
  • De Luca A, Dantas RF, Esplugas S. Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Res. 2014;61:232–242. doi: 10.1016/j.watres.2014.05.033
  • Kanazawa S, Kawano H, Watanabe S, et al. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol. 2011;20(3):034010. doi: 10.1088/0963-0252/20/3/034010
  • Locke BR, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial Engineering Chemistry Research. 2006;45(3):882–905. doi: 10.1021/ie050981u
  • Antoniou MG, de la Cruz AA, Dionysiou DD. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms. Applied Catalysis B: Environmental. 2010;96(3–4):290–298. doi: 10.1016/j.apcatb.2010.02.013
  • Wu J, Xiong Q, Liang J, et al. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: mechanism, degradation pathway and potential toxicity. Chem Eng J. 2020;384:123300. doi: 10.1016/j.cej.2019.123300
  • Mao S, Zhao P, Wu Y, et al. Promoting charge migration of Co(OH)2/g-C3N4 by hydroxylation for improved PMS activation: catalyst design, DFT calculation and mechanism analysis. Chem Eng J. 2023;451:138503. doi: 10.1016/j.cej.2022.138503
  • Yi C, Yang L, Yi R, et al. Degradation of the nonylphenol aqueous solution by strong ionization discharge: evaluation of degradation mechanism and the water toxicity of zebrafish. Water Sci Technol. 2022;86(2):227–243. doi: 10.2166/wst.2022.175
  • Zhao H, Yi C, Yi R, et al. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge. Plasma Sci Technol. 2018;20:035503. doi: 10.1088/2058-6272/aa97d1
  • Nawaz MI, Yi C, Zafar AM, et al. Efficient degradation and mineralization of aniline in aqueous solution by new dielectric barrier discharge non-thermal plasma. Environ Res. 2023;237:117015. doi: 10.1016/j.envres.2023.117015
  • Nawaz MI, Yi C, Zhao H, et al. Experimental study of nitrobenzene degradation in water by strong ionization dielectric barrier discharge. Environ Technol. 2021;42(5):789–800. doi: 10.1080/09593330.2019.1645740
  • Nawaz MI, Yi C, Asilevi PJ, et al. A Study of the performance of dielectric barrier discharge under different conditions for nitrobenzene degradation. Water. 2019;11(4):842. doi: 10.3390/w11040842
  • Wang J, Sun Y, Feng J, et al. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: effect of operating parameters and byproducts identification. Chem Eng J. 2016;300:36–46. doi: 10.1016/j.cej.2016.04.041
  • Rastogi A, Ai-Abed SR, Dionysiou DD. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B-Environ. 2009;85(3–4):171–179. doi: 10.1016/j.apcatb.2008.07.010
  • Huang W, Brigante M, Wu F, et al. Effect of ethylenediamine-N,N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol a degradation. Environ Sci Pollut Res. 2013;20(1):39–50. doi: 10.1007/s11356-012-1042-6
  • Xiong L, Ren W, Lin H, et al. Efficient removal of bisphenol a with activation of peroxydisulfate via electrochemically assisted Fe(III)-nitrilotriacetic acid system under neutral condition. J Hazard Mater. 2021;403:123874. doi: 10.1016/j.jhazmat.2020.123874
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O) in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886. doi: 10.1063/1.555805
  • Shang K, Wang X, Li J, et al. Synergetic degradation of acid orange 7 (AO7) dye by DBD plasma and persulfate. Chem Eng J. 2017;311:378–384. doi: 10.1016/j.cej.2016.11.103
  • Maezono T, Tokumura M, Sekine M, et al. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye orange II. Chemosphere. 2011;82(10):1422–1430. doi: 10.1016/j.chemosphere.2010.11.052
  • Lou J, Lu G, Wei Y, et al. Enhanced degradation of residual potassium ethyl xanthate in mineral separation wastewater by dielectric barrier discharge plasma and peroxymonosulfate. Separation and Purification Technology. 2022;282:119955. doi: 10.1016/j.seppur.2021.119955
  • Jiang B, Zheng J, Liu Q, et al. Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system. Chem Eng J. 2012;204:32–39. doi: 10.1016/j.cej.2012.07.088
  • Li J, Cheng X, Zhang H, et al. Insights into performance and mechanism of ZnO/CuCo2O4 composite as heterogeneous photoactivator of peroxymonosulfate for enrofloxacin degradation. J Hazard Mater. 2023;448:130946. doi: 10.1016/j.jhazmat.2023.130946
  • Wang JL, Wang SZ. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem Eng J. 2021;411:128392. doi: 10.1016/j.cej.2020.128392
  • Jiang C, Ji Y, Shi Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: kinetics, mechanisms and effects of natural water matrices. Water Res. 2016;106:507–517. doi: 10.1016/j.watres.2016.10.025
  • Pan X, Yan L, Qu R, et al. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Chemosphere. 2018;196:95–104. doi: 10.1016/j.chemosphere.2017.12.152
  • Yuan R, Ramjaun SN, Wang Z, et al. Effects of chloride ion on degradation of acid orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater. 2011;196:173–179. doi: 10.1016/j.jhazmat.2011.09.007
  • Wang Z, Yuan R, Guo Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis. J Hazard Mater. 2011;190(1–3):1083–1087. doi: 10.1016/j.jhazmat.2011.04.016
  • Zhang RC, Sun PZ, Boyer TH, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ Sci Technol. 2015;49(5):3056–3066. doi: 10.1021/es504799n
  • Zhang G, He X, Nadagouda MN, et al. The effect of basic pH and carbonate ion on the mechanism of photocatalytic destruction of cylindrospermopsin. Water Res. 2015;73:353–361. doi: 10.1016/j.watres.2015.01.011
  • He C, Xia W, Zhou C, et al. Rational design to manganese and oxygen co-doped polymeric carbon nitride for efficient nonradical activation of peroxymonosulfate and the mechanism insight. Chem Eng J. 2022;430:132751. doi: 10.1016/j.cej.2021.132751
  • Yang B, Kookana RS, Williams M, et al. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): products identification, and toxicity evaluation. J Hazard Mater. 2016;320:296–303. doi: 10.1016/j.jhazmat.2016.08.040
  • Li Y, Niu J, Wang W. Photolysis of enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products. Chemosphere. 2011;85(5):892–897. doi: 10.1016/j.chemosphere.2011.07.008
  • Qiu W, Zheng M, Sun J, et al. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Sci Total Environ. 2019;651:1457–1468. doi: 10.1016/j.scitotenv.2018.09.315
  • He G, Zhang T, Zheng F, et al. Reaction of fleroxacin with chlorine and chlorine dioxide in drinking water distribution systems: kinetics, transformation mechanisms and toxicity evaluations. Chem Eng J. 2019;374:1191–1203. doi: 10.1016/j.cej.2019.06.022