67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of FeSO4, nano zero-valent iron, and their CaCO3 composites on the formation of iron plaque and cadmium translocation in rice (Oryza sativa L.)

, , , , , , , , , & show all
Article: 2368588 | Received 26 Feb 2024, Accepted 12 Jun 2024, Published online: 25 Jun 2024

References

  • Wu Y, Li X, Yu L, et al. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour Conserv Recycl. 2022;181:106261. doi: 10.1016/j.resconrec.2022.106261
  • Napoletano P, Guezgouz N, Di Iorio E, et al. Anthropic impact on soil heavy metal contamination in riparian ecosystems of northern Algeria. Chemosphere. 2023;313:137522. doi: 10.1016/j.chemosphere.2022.137522
  • Rashid A, J SB, Ulery A, et al. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. 2023;13(6):1521. doi: 10.3390/agronomy13061521
  • Elango D, Devi KD, K JH, et al. Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. J Agri Food Res. 2022;10:100374. doi: 10.1016/j.jafr.2022.100374
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691
  • Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J Environ Manage. 2016;181:646–14. doi: 10.1016/j.jenvman.2016.08.043
  • Xiong R, Wu Q, Trbojevich R, et al. Disease-related responses induced by cadmium in an in vitro human airway tissue model. Toxicol Lett. 2019;303:16–27. doi: 10.1016/j.toxlet.2018.12.009
  • Wang X, Cui W, Wang M, et al. The association between life-time dietary cadmium intake from rice and chronic kidney disease. Ecotox Environ Safe. 2021;211:111933. doi: 10.1016/j.ecoenv.2021.111933
  • Li Y, Chen C, Lu L, et al. Cadmium exposure in young adulthood is associated with risk of nonalcoholic fatty liver disease in midlife. Digest Dis Sci. 2022;67(2):689–696. doi: 10.1007/s10620-021-06869-8
  • Obeng-Gyasi E. Chronic cadmium exposure and cardiovascular disease in adults. J Environ Sci Heal A. 2020;55(6):726–729. doi: 10.1080/10934529.2020.1737459
  • Ma Y, Ran D, Shi X, et al. Cadmium toxicity: A role in bone cell function and teeth development. Sci Total Environ. 2021;769:144646. doi: 10.1016/j.scitotenv.2020.144646
  • Feng Y, Lei Z, Tong X, et al. Spatially-explicit modeling and intensity analysis of China’s land use change 2000–2050. J Environ Manage. 2020;263:110407. doi: 10.1016/j.jenvman.2020.110407
  • Chen W, Zhao X. Understanding global rice trade flows: network evolution and implications. Foods. 2023;12(17):3298. doi: 10.3390/foods12173298
  • Y XX, P MS, A MA, et al. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol. 2008;42(15):5574–5579. doi: 10.1021/es800324u
  • Shi Z, Carey M, Meharg C, et al. Rice grain cadmium concentrations in the global supply-chain. Expos Health. 2020;12(4):869–876. doi: 10.1007/s12403-020-00349-6
  • Zandi P, Yang J, Darma A, et al. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.). Environ Geochem Hlth. 2023;45(3):525–559. doi: 10.1007/s10653-022-01246-4
  • Xu B, Wang F, H ZQ, et al. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: Insights from hydroponic and soil cultivation. Ecotox Environ Safe. 2018;162:51–58. doi: 10.1016/j.ecoenv.2018.06.063
  • Li Y, Zhao J, Zhang B, et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil. 2016;398(1):87–97. doi: 10.1007/s11104-015-2627-x
  • Zou L, Zhang S, Duan D, et al. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil. Environ Sci Pollut R. 2018;25(9):8888–8902. doi: 10.1007/s11356-017-1175-8
  • Xu B, Yu S. Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Ann Bot-London. 2013;111(6):1189–1195. doi: 10.1093/aob/mct072
  • J LW, G ZY, Hu Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol. 2006;40(18):5730–5736. doi: 10.1021/es060800v
  • Khan N, Seshadri B, Bolan N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv Agron. 2016;138:1–96. doi: 10.1016/bs.agron.2016.04.002
  • Xu B, Y CJ, Yu JY, et al. Effects of 24-epibrassinolide and 28-homobrassinolide on iron plaque formation and the uptake of as and Cd by rice seedlings (Oryza sativa L.) in solution culture. Environ Technol Inno. 2020;19:19. doi: 10.1016/j.eti.2020.100802
  • Yu J, Guo X, Luo Z, et al. Do brassinosteroids and iron plaque affect the accumulation of as and Cd in rice (Oryza sativa L.)? Environ Technol Inno. 2021;23:101660. doi: 10.1016/j.eti.2021.101660
  • Liu HJ, Zhang JL, Zhang FS. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ Exp Bot. 2007;59(3):314–320. doi: 10.1016/j.envexpbot.2006.04.001
  • Saleem A, Zulfiqar A, Ali B, et al. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability. 2022;14(24):16845. doi: 10.3390/su142416845
  • Mei J, Ji K, Su L, et al. Effects of FeSO4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw. Bioresource Technol. 2021;341:125867. doi: 10.1016/j.biortech.2021.125867
  • Galdames A, Ruiz-Rubio L, Orueta M, et al. Zero-valent iron nanoparticles for soil and groundwater remediation. Int J Environ Res Public Health. 2020;17(16):5817. doi: 10.3390/ijerph17165817
  • Zhang N, Fang Z, Zhang R. Comparison of several amendments for in-site remediating chromium-contaminated farmland soil. Water Air Soil Pollut. 2017;228(10):400. doi: 10.1007/s11270-017-3571-6
  • Tang B, Zi Y, e LC, et al. Effects of nano-zero-valent iron and earthworms on soil physicochemical properties and microecology in cadmium-contaminated soils. Water Air Soil Pollut. 2024;235(1):81. doi: 10.1007/s11270-023-06865-w
  • Vítková M, Puschenreiter M, Komárek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere. 2018;200:217–226. doi: 10.1016/j.chemosphere.2018.02.118
  • Gong X, Huang D, Liu Y, et al. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol. 2017;51(19):11308–11316. doi: 10.1021/acs.est.7b03164
  • Zhou P, Zhang P, He M, et al. Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation. Environ Pollut. 2023;320:121063. doi: 10.1016/j.envpol.2023.121063
  • Wang Y, Liu Y, Su G, et al. Transformation and implication of nanoparticulate zero valent iron in soils. J Hazard Mater. 2021;412:125207. doi: 10.1016/j.jhazmat.2021.125207
  • Chen Z, T TY, Zhou C, et al. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere. 2017;175:275–285. doi: 10.1016/j.chemosphere.2017.02.053
  • Wang X, Zhang D, Cao Y, et al. Safe utilization effect of passivator on mild to moderate cadmium contaminated farmland (in Chinese). Environ Sci. 2024;45(2):1098–1106. doi: 10.13227/j.hjkx.202303151
  • J LH, L ZJ, Christie P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ. 2008;394(2–3):361–368. doi: 10.1016/j.scitotenv.2008.02.004
  • Li T, Li J, Zhan X, et al. Application of Exogenous Iron Alters the Microbial Community Structure and Reduces the Accumulation of Cadmium and Arsenic in Rice (Oryza sativa L.). Nanomaterials. 2022;12(8):1311. doi: 10.3390/nano12081311
  • Ghaley BB. Uptake and utilization of 5-split nitrogen topdressing in an improved and a traditional rice cultivar in the Bhutan highlands. Exp Agr. 2012;48(4):536–550. doi: 10.1017/S0014479712000440
  • Jin Z, Luo D, Yu Y, et al. Soil pH changes in a small catchment on the Chinese Loess Plateau after long-term vegetation rehabilitation. Ecol Eng. 2022;175:106503. doi: 10.1016/j.ecoleng.2021.106503
  • Tang L, Deng S, Tan D, et al. Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake area, China. Environ Sci Pollut R. 2019;26(17):17655–17665. doi: 10.1007/s11356-019-05134-w
  • Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge. Biometals. 2010;23(5):927–940. doi: 10.1007/s10534-010-9329-x
  • Shao G, Chen M, Wang W, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul. 2007;53(1):33–42. doi: 10.1007/s10725-007-9201-3
  • A KM, James B, H CY, et al. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (Fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere. 2019;215:916–924. doi: 10.1016/j.chemosphere.2018.10.077
  • Clemens S, M AMG, Thomine S, et al. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 2013;18(2):92–99. doi: 10.1016/j.tplants.2012.08.003
  • Meng H, Hua S, H SI, et al. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L. and its alleviation through exogenous plant growth regulators. Plant Growth Regul. 2009;58(1):47–59. doi: 10.1007/s10725-008-9351-y
  • Huybrechts M, Hendrix S, Kyndt T, et al. Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Sci. 2021;313:111054. doi: 10.1016/j.plantsci.2021.111054
  • B SA, M RM, R IM, et al. Response of iron and cadmium on yield and yield components of rice and translocation in grain: health risk estimation. Front Environ Sci. 2021;9:9. doi: 10.3389/fenvs.2021.716770
  • Afzal J, H SM, Batool F, et al. Role of ferrous sulfate (FeSO4) in resistance to cadmium stress in two rice (Oryza sativa L.) genotypes. Biomolecules. 2020;10(12):1693. doi: 10.3390/biom10121693
  • S DS, Sharma V, K SA, et al. Biofortification of soybean (Glycine max L.) through FeSO4·7H2O to enhance yield, iron nutrition and economic outcomes in sandy loam soils of India. Agriculture. 2022;12(5):586. doi: 10.3390/agriculture12050586
  • Torabian S, Zahedi M, Khoshgoftar AH. Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutr. 2017;40(5):615–623. doi: 10.1080/01904167.2016.1240187
  • Vansuyt G, Robin A, Briat J-F, et al. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact. 2007;20(4):441–447. doi: 10.1094/mpmi-20-4-0441
  • Muneer S, Jeong BR, Decreases S. Fe deficiency responses by improving photosynthesis and maintaining composition of thylakoid multiprotein complex proteins in soybean plants (Glycine max. J Plant Growth Regul. 2015;34(3):485–498. doi: 10.1007/s00344-015-9484-y
  • Kroh GE, Pilon M. Regulation of iron homeostasis and use in chloroplasts. Int J Mol Sci. 2020;21(9):3395. doi: 10.3390/ijms21093395
  • J GK, H HK, J MLA, et al. Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett. 2011;585(24):3843–3849. doi: 10.1016/j.febslet.2011.10.036
  • Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radial Bio Med. 2019;133:11–20. doi: 10.1016/j.freeradbiomed.2018.10.439
  • Yan Z, Hu Z, Wang S, et al. Effects of lime content on soil acidity, soil nutrients and crop growth in rice-rape rotation system (in Chinese). Sci Agric Sin. 2019;52(23):4285–4295. doi: 10.3864/j.issn.0578-1752.2019.23.009
  • Briat JF, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015;20(1):33–40. doi: 10.1016/j.tplants.2014.07.005
  • Y YH, Wang X, Li F, et al. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environ Pollut. 2017;224:136–147. doi: 10.1016/j.envpol.2017.01.072
  • Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63(1):131–152. doi: 10.1146/annurev-arplant-042811-105522
  • M ZD, Y JS, J WY, et al. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils. Soil Sediment Contam. 2012;21(1):101–114. doi: 10.1080/15320383.2012.636778
  • Li XQ, Elliott DW, Zhang WX. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State. 2006;31(4):111–122. doi: 10.1080/10408430601057611
  • Xia R, Zhou J, Cui H, et al. Nodes play a major role in cadmium (Cd) storage and redistribution in low-Cd-accumulating rice (Oryza sativa L.) cultivars. Sci Total Environ. 2023;859:160436. doi: 10.1016/j.scitotenv.2022.160436
  • Ismail MB, A, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci. 2013;4:4. doi: 10.3389/fpls.2013.00269
  • L HX, K FS, Zhu J, et al. Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant Soil. 2017;416(1):453–462. doi: 10.1007/s11104-017-3232-y
  • Yu E, Wang W, Yamaji N, et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. Nat Food. 2022;3(8):597–607. doi: 10.1038/s43016-022-00569-w
  • Zhang X, Zhang X, Zheng Y, et al. Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements (in Chinese). Environ Sci. 2013;34(7):2837–2846. doi: 10.13227/j.hjkx.2013.07.015
  • Wang X, Deng S, Zhou Y, et al. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. Environ Sci Pollut R. 2021;28(7):7828–7839. doi: 10.1007/s11356-020-11056-9
  • Kong F, Zhou J, X GD, et al. Role of iron manganese plaque in the safe production of rice (Oryza sativa L.) grains: Field evidence at plot and regional scales in cadmium-contaminated paddy soils. Sci Total Environ. 2023;903:166183. doi: 10.1016/j.scitotenv.2023.166183
  • D CJ, Huang S, Yamaji N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 2020;43(10):2476–2491. doi: 10.1111/pce.13843
  • Dong H, Tang S, Ye S, et al. Effect of lime on the transfer of Cd and Pb in the soil-rice cultivation system and their accumulation in the rice grains (in Chinese). J Safe Environ. 2016;16(2):226–231. doi: 10.13637/j.issn.1009-6094.2016.02.044
  • Wang P, Zhao F. The transfer and control of cadmium in the soil-rice systems (in Chinese). J Nanjing Agri U. 2022;45(5). doi: 10.7685/jnau.202205004