133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted magnetic biochar for removal of hexavalent chromium from aqueous solution

, , , , , , , & show all
Article: 2368590 | Received 29 Jan 2024, Accepted 12 Jun 2024, Published online: 24 Jun 2024

References

  • Sahu UK, Sahu S, Mahapatra SS, et al. Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for as (III) and as (V): material preparation, characterization and adsorption mechanism study. J Mol Liq. 2017;243:395–11. doi: 10.1016/j.molliq.2017.08.055
  • Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, Waseem M, Irfan A, Inam A and Zaki ME. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: a review. Ecotoxicol Environ Saf. 2023;263:115231. doi: 10.1016/j.ecoenv.2023.115231
  • Kurniawan TA, Othman MHD, Adam MR, et al. Chromium removal from aqueous solution using natural clinoptilolite. Water. 2023;15(9):1667. doi: 10.3390/w15091667
  • Sahu UK, Chen J, Ma H, et al. As (III) removal from aqueous solutions using simultaneous oxidation and adsorption process by hierarchically magnetic flower-like Fe3O4@ C-dot@ MnO2 nanocomposite. J Environ Health Sci Eng. 2023;21(1):47–61. doi: 10.1007/s40201-022-00834-x
  • Guo J, Li Y, Dai R, et al. Rapid reduction of Cr(VI) coupling with efficient removal of total chromium in the coexistence of Zn(0) and silica gel. J Hazard Mater. 2012;243(4):265–271. doi: 10.1016/j.jhazmat.2012.10.028
  • IARC. Chromium (VI) compounds. International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans. 2012;100C:147–168.
  • Hossain MN, Howladar MF, Khan MI, et al. Appraisal of trace metals toxicity and human health risk using a novel approach in wastewater of four gas fields. Groundwater For Sustain Devel. 2024;25:101080. doi: 10.1016/j.gsd.2024.101080
  • Ayele A, Godeto YG, Zhang Y. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J Chem. 2021;2021:1–21. doi: 10.1155/2021/7694157
  • PAK-EPA. National standards for drinking water quality (NSDWG); Pakistan environmental protection agency (PAK-EPA). Islamabad, Pakistan: Ministry of Environment: Government of Pakistan; 2008.
  • WHO. Chromium in drinking-water, draft background document for development of WHO guidelines for Drinking-Water Quality World Health Organization, Geneva, Switzerland. 2019.
  • Sricharoenvech P, Siebecker MG, Tappero R, et al. Chromium speciation and mobility in contaminated coastal urban soils affected by water salinity and redox conditions. J Hazard Mater. 2024;462:132661. doi: 10.1016/j.jhazmat.2023.132661
  • Zou Y, Wang X, Khan A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 2016;50(14):7290–7304. doi: 10.1021/acs.est.6b01897
  • Wang L, Wang Y, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ. 2019;668:1298–1309. doi: 10.1016/j.scitotenv.2019.03.011
  • Khalil U, Shakoor MB, Ali S, et al. Selective removal of hexavalent chromium from wastewater by rice husk: kinetic, isotherm and spectroscopic investigation. Water. 2021;13(3):263. doi: 10.3390/w13030263
  • Zhang N, Reguyal F, Sarmah AK. Effect of iron nanoparticles on chromium adsorption in aqueous solution using magnetic biochar: a site energy distribution analysis. Environ Pollut. 2024;346:123593. doi: 10.1016/j.envpol.2024.123593
  • Liu B, Xin YN, Zou J, et al. Removal of chromium species by adsorption: fundamental principles, newly developed adsorbents and future perspectives. Molecules. 2023;28(2):639. doi: 10.3390/molecules28020639
  • Qiao K, Tian W, Bai J, et al. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ Technol Innov. 2020;19:100907. doi: 10.1016/j.eti.2020.100907
  • Ameha B, Nadew TT, Tedla TS, et al. The use of banana peel as a low-cost adsorption material for removing hexavalent chromium from tannery wastewater: optimization, kinetic and isotherm study, and regeneration aspects. RSC Adv. 2024;14(6):3675–3690. doi: 10.1039/D3RA07476E
  • Chatzimichailidou S, Xanthopoulou M, Tolkou AK, et al. Biochar derived from rice by-products for arsenic and chromium removal by adsorption: a review. J Composites Sci. 2023;7(2):59. doi: 10.3390/jcs7020059
  • Sahu UK, Tripathy S, Gouda N, et al. Activated carbon–modified iron oxide nanoparticles for Cr (VI) removal: optimization, kinetics, isotherms, thermodynamics, regeneration, and mechanism study. Water Air Soil Pollut. 2023;234(9):561. doi: 10.1007/s11270-023-06588-y
  • Shakoor MB, Ye ZL, Chen S. Engineered biochars for recovering phosphate and ammonium from wastewater: a review. Sci Total Environ. 2021;779:146240. doi: 10.1016/j.scitotenv.2021.146240
  • Tian L, Li H, Chang Z, et al. Biochar modification to enhance arsenic removal from water: a review. Environ Geochem Health. 2023;45(6):2763–2778. doi: 10.1007/s10653-022-01462-y
  • Wilson K, Iqbal J, Obaid Abdalla Obaid Hableel A, et al. Camel dung-derived biochar for the removal of Copper (II) and Chromium (III) Ions from aqueous solutions: adsorption and kinetics studies. ACS Omega. 2024;9(10):11500–11509.
  • Tan X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 2015;125:70–85. doi: 10.1016/j.chemosphere.2014.12.058
  • Wasewar KL, Atif M, Prasad B, et al. Batch adsorption of zinc on tea factory waste. Desalinat. 2009;244(1–3):66–71. doi: 10.1016/j.desal.2008.04.036
  • Yaseen M, Abbas F, Shakoor MB, et al. Biomass for renewable energy production in Pakistan: current state and prospects. Arabian J Geosci. 2020;13(2):1–13. doi: 10.1007/s12517-019-5049-x
  • Lian G, Wang B, Lee X, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains. Sci Total Environ. 2019;697:134119. doi: 10.1016/j.scitotenv.2019.134119
  • Zhang K, Yi Y, Fang Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: a review. Chemosph. 2023;311:136914. doi: 10.1016/j.chemosphere.2022.136914
  • Chen L, Chen Z, Chen D, et al. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling. J Environ Sci. 2017;52:276–283. doi: 10.1016/j.jes.2016.04.006
  • Xu X, Huang H, Zhang Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environ Pollut. 2019;244:423–430. doi: 10.1016/j.envpol.2018.10.068
  • Lyu H, Tang J, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J. 2017;322:516–524. doi: 10.1016/j.cej.2017.04.058
  • Zou H, Zhao J, He F, et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: performance and mechanisms. J Hazard Mater. 2021;413:125252. doi: 10.1016/j.jhazmat.2021.125252
  • Mohan D, Kumar H, Sarswat A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J. 2014;236:513–528. doi: 10.1016/j.cej.2013.09.057
  • Chen B, Chen Z, Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Biores Technol. 2011;102(2):716–723. doi: 10.1016/j.biortech.2010.08.067
  • Li R, Wang Z, Zhao X, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water. Environ Sci Pollut Res. 2018;25(31):31136–31148. doi: 10.1007/s11356-018-3064-1
  • Zhang S, Lyu H, Tang J, et al. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosph. 2019;217:686–694. doi: 10.1016/j.chemosphere.2018.11.040
  • Shang J, Pi J, Zong M, et al. Chromium removal using magnetic biochar derived from herb-residue. J Taiwan Inst Chem Eng. 2016;68:289–294. doi: 10.1016/j.jtice.2016.09.012
  • Xin O, Yitong H, Xi C, et al. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution. Water Sci Technol. 2017;75(5):1177–1184. doi: 10.2166/wst.2016.610
  • Shafiee M, Foroutan R, Fouladi K, et al. Application of oak powder/Fe3O4 magnetic composite in toxic metals removal from aqueous solutions. Adv Powder Technol. 2019;30(3):544–554. doi: 10.1016/j.apt.2018.12.006
  • Chen Y, Wang B, Xin J, et al. Adsorption behavior and mechanism of Cr (VI) by modified biochar derived from enteromorpha prolifera. Ecotoxicol Environ Saf. 2018;164:440–447. doi: 10.1016/j.ecoenv.2018.08.024
  • Zhang X, Lv L, Qin Y, et al. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Biores Technol. 2018;256:1–10. doi: 10.1016/j.biortech.2018.01.145
  • Natarajan P, Suriapparao DV, Vinu R. Microwave torrefaction of Prosopis juliflora: experimental and modeling study. Fuel Process Technol. 2018;172:86–96. doi: 10.1016/j.fuproc.2017.12.007
  • Govindaraju K, Vinu R, Gautam R, et al. Microwave-assisted torrefaction of biomass kappaphycus alvarezii–based biochar and magnetic biochar for removal of hexavalent chromium [Cr (VI)] from aqueous solution. Biomass Convers Biorefin. 2024;14(3):3643–3653. doi: 10.1007/s13399-022-02512-2
  • Cheng S, Meng W, Xing B, et al. Efficient removal of heavy metals from aqueous solutions by Mg/Fe bimetallic oxide-modified biochar: experiments and DFT investigations. J Clean Prod. 2023;403:136821. doi: 10.1016/j.jclepro.2023.136821
  • Trakal L, Veselská V, Šafařík I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056
  • Qayyum MF, Abid M, Danish S, et al. Effects of various biochars on seed germination and carbon mineralization in an alkaline soil. Pak. J. Agric. Sci. 2015;51:977–982.
  • Kokab T, Ashraf HS, Shakoor MB, et al. Effective removal of Cr (VI) from wastewater using biochar derived from walnut shell. Int J Environ Res Public Health. 2021;18(18):9670. doi: 10.3390/ijerph18189670
  • Babel S, Kurniawan TA. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosph. 2004;54(7):951–967. doi: 10.1016/j.chemosphere.2003.10.001
  • Zhuang L, Li Q, Chen J, et al. Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium. Chem Eng J. 2014;253(7):24–33. doi: 10.1016/j.cej.2014.05.038
  • Mohan D, Rajput S, Singh VK, et al. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater. 2011;188(1–3):319–333. doi: 10.1016/j.jhazmat.2011.01.127
  • Huang G, Zhang H, Shi JX, et al. Adsorption of chromium (VI) from aqueous solutions using cross-linked magnetic chitosan beads. Ind Eng Chem Res. 2009;48(5):2646–2651. doi: 10.1021/ie800814h
  • Yang Z, Shan C, Zhang W, et al. Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator. Water Res. 2016;106:461–469. doi: 10.1016/j.watres.2016.10.030
  • Calderon B, Fullana A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res. 2015;83:1–9. doi: 10.1016/j.watres.2015.06.004
  • Hameed BH, Din AM, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 2007;141(3):819–825. doi: 10.1016/j.jhazmat.2006.07.049
  • Zhu S, Huang X, Wang D, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential. Chemosph. 2018;207:50–59. doi: 10.1016/j.chemosphere.2018.05.046
  • Magioglou E, Frontistis Z, Vakros J, et al. Activation of persulfate by biochars from valorized olive stones for the degradation of sulfamethoxazole. Catalysts. 2019;9(5):419. doi: 10.3390/catal9050419
  • Khalil U, Shakoor MB, Ali S, et al. Tea waste as a potential biowaste for removal of hexavalent chromium from wastewater: equilibrium and kinetic studies. Arab J Geosci. 2018;11(19):1–9. doi: 10.1007/s12517-018-3932-5
  • Yuan YC, Chen BR, Wang RX. Studies of properties and preparation of chitosan resin crosslinked by formaldehyde and epichlorohydrin. Polym Eng Sci. 2004;20(1):53–57.
  • Zhao N, Zhao C, Lv Y, et al. Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar. Chemosphere. 2017;186:422–429. doi: 10.1016/j.chemosphere.2017.08.016
  • Özçimen D, Ersoy-Meriçboyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy. 2010;35(6):1319–1324. doi: 10.1016/j.renene.2009.11.042
  • Reddy DHK, Lee SM. Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. A Physicochem Eng Asp. 2014;454:96–103. doi: 10.1016/j.colsurfa.2014.03.105
  • Tuna AÖA, Özdemir E, Şimşek EB, et al. Removal of as (V) from aqueous solution by activated carbon-based hybrid adsorbents: impact of experimental conditions. Chem Eng J. 2013;223:116–128. doi: 10.1016/j.cej.2013.02.096
  • Pan J, Jiang J, Xu R. Adsorption of Cr (III) from acidic solutions by crop straw derived biochars. Int J Environ Sci. 2013;25(10):1957–1965. doi: 10.1016/S1001-0742(12)60305-2
  • Zhang JY, Zhou H, Gu JF, et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ Pollut. 2020;260:113970. doi: 10.1016/j.envpol.2020.113970
  • Choudhury B, Dey M, Choudhury A. Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci. 2014;4(4):499–506. doi: 10.1007/s13204-013-0226-9
  • Bartis EA, Luan P, Knoll AJ, et al. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions. Biointerphases. 2015;10(2):029512. doi: 10.1116/1.4919410
  • Moulder JF. Handbook of X-Ray photoelectron spectroscopy. Phys Electron. 1992;1:230–232.
  • Wang DH, Hu Y, Zhao JJ, et al. Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing. J Mater Chem. 2014;2(41):17415–17420. doi: 10.1039/C4TA03740E
  • Yu B, Wang X, Qian X, et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014;4(60):31782–31794. doi: 10.1039/C3RA45945D
  • Huang P, Ye Z, Xie W, et al. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res. 2013;47(12):4050–4058. doi: 10.1016/j.watres.2013.01.054