1,422
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Tailoring the monomers to overcome the shortcomings of current dental resin composites – review

, , &
Article: 2191621 | Received 23 Jan 2023, Accepted 10 Mar 2023, Published online: 20 Apr 2023

References

  • Ferracane JL. Resin composite – state of the art. Dent Mater. 2011;27(1):29–38.
  • Vallittu PK. An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater Odontol Scand. 2018;4(1):44–55.
  • Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001;26(4):535–576.
  • Moszner N, Hirt T. New polymer-chemical developments in clinical dental polymer materials: enamel-dentin adhesives and restorative materials. J Polym Sci A Polym Chem. 2012;50(21):4369–4402.
  • Zhu XX, Lavigueur C. Recent advances in development of dental composite resins. RSC Adv. 2012;2:59–63.
  • Pfeifer CS, Fugolin APP. New resins for dental composites. J Dent Res. 2017;96:1085–1092.
  • Habib E, Wang R, Wang Y, et al. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2(1):1–11.
  • Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater. 2021;122:50–65.
  • Karabela MM, Sideridou ID. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent Mater. 2008;24(12):1631–1639.
  • Matinlinna JP, Vallittu PK, Lassila LVA. Effects of different silane coupling agent monomers on flexural strength of an experimental filled resin composite. J Adhes Sci Technol. 2011;25(1–3):179–192.
  • Nihei T. Dental applications for silane coupling agents. J Oral Sci. 2016;58(2):151–155.
  • Meereis CTW, Münchow EA, Rosa WLO, et al. Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of composition strategies. J Mech Behav Biomed Mater. 2018;82:268–281.
  • Ferracane JL, Pfeifer CS, Hilton TJ. Microstructural features of current resin composite materials. Curr Oral Health Rep. 2014;1(4):205–212.
  • Tobolsky AV, Leonard F, Roeser GP. Use of polymerizable ring compounds in constant volume polymerizations. J Polym Sci. 1948;3(4):604–606.
  • Ge J, Trujillo M, Stansbury J. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater. 2005;21(12):1163–1169.
  • Ellakwa A, Cho N, Lee IB. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater. 2007;23(10):1229–1235.
  • Soares CJ, Faria-E-Silva AL, Rodrigues MdP, et al. Polymerization shrinkage stress of composite resins and resin cements – what do we need to know? Braz Oral Res. 2017;31(Suppl 1):49–63.
  • Rees JS, Jacobsen PH. The polymerization shrinkage of composite resin. Dent Mater. 1989;5(1):41–44.
  • Peutzfeldt A, Asmussen E. Determinants of in vitro gap formation of resin composites. J Dent. 2004;32(2):109–115.
  • Ferracane JL, Hilton TJ. Polymerization stress-is it clinically meaningful? Dent Mater. 2016;32(1):1–10.
  • Tauscher S, Catel Y, Fässler P, et al. Development of low shrinkage composites based on novel crosslinking vinylcyclopropanes. J Appl Polym Sci. 2017;134(48):45577.
  • He J, Garoushi S, Vallittu PK, et al. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin. Acta Biomater Odontol Scand. 2018;4(1):30–37.
  • Patel MP, Braden M, Davy KWM. Polymerization shrinkage of methacrylate esters. Biomaterials. 1987;8(1):53–56.
  • Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials. 1993;14(11):871–875.
  • Yap AU, Soh MS. Post-gel polymerization contraction of “low shrinkage” composite restoratives. Oper Dent. 2004;29:182–187.
  • Dewaele M, Truffier-Boutry D, Devaux J, et al. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater. 2006;22(4):359–365.
  • de Oliveira DC, Rovaris K, Hass V, et al. Effect of low shrinkage monomers on physicochemical properties of dental resin composites. Braz Dent J. 2015;26(3):272–276.
  • Chung CM, Kim MS, Kim JG, et al. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J Biomed Mater Res. 2002;62(4):622–627.
  • Kim JG, Chung CM. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials. 2003;24(21):3845–3851.
  • He J, Luo Y, Liu F, et al. Synthesis, characterization and photopolymerization of a new dimethacrylate monomer based on (α-mehtyl-benzylidene)bisphenol used as root canal sealer. J Biomater Sci Polym Ed. 2010;21(8–9):1191–1205.
  • He J, Luo Y, Liu F, et al. Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials. J Biomater Appl. 2010;25(3):235–249.
  • He J, Liao L, Liu F, et al. Synthesis and characterization of a new dimethacrylate monomer based on 5,5’-bis(4-hydroxylphenyl)-hexahydro-4,7-methanoindan for root canal sealer application. J Mater Sci Mater Med. 2010;21:1135–1142.
  • He J, Liu F, Luo Y, et al. Synthesis and characterization of a dimethacrylates monomer with low shrinkage and water sorption for dental application. J Appl Polym Sci. 2012;125(1):114–120.
  • He J, Liu F, Vallittu PK, et al. Synthesis of dimethacrylates monomers with low polymerization shrinkage and its application in dental composite materials. J Polym Res. 2012;19(8):9932.
  • He J, Liu F, Vallittu PK, et al. Synthesis and characterization of new dimethacrylate monomer and its application in dental resin. J Biomater Sci Polym Ed. 2013;24(4):417–430.
  • Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87(6):642–649.
  • Bociong K, Szczesio A, Krasowski M, et al. The influence of filler amount on selected properties of new experimental resin dental composite. Open Chem. 2018;16(1):905–911.
  • Liu J, Zhang H, Sun H, et al. The development of filler morphology in dental resin composites: a review. Materials. 2021;14(19):5612.
  • Trujillo-Lemon M, Ge J, Lu H, et al. Dimethacrylate derivatives of dimer acid. J Polym Sci A Polym Chem. 2006;44(12):3921–3929.
  • Boaro LCC, Gonçalves F, Guimarães TC, et al. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26(12):1144–1150.
  • Potschke D, Ballauff M, Lindner P, et al. Analysis of structure of dendrimers in solution by small-angle neutron scattering including contrast variation. Macromolecules. 1999;32(12):4079–4087.
  • Sendijarevic I, McHugh AJ. Effects of molecular variables and architecture on the rheological behavior of dendritic polymers. Macromolecules. 2000;33(2):590–596.
  • Wan Q, Schricker SR, Culbertson BM. Methacrylate derivatized hyperbranched polyester. 2. Photo-polymerization and properties for dental resin systems. J Macromol Sci Part A.2000;37(11):1317–1331.
  • Dewaele M, Leprince JG, Fallais I, et al. Benefits and limitation of adding hyperbranched polymers to dental resins. J Dent Res. 2012;91(12):1178–1183.
  • Yu B, Liu F, He J. Preparation of low shrinkage methacrylate-based resin system without bisphenol a structure by using a synthesized dendritic macromer (G-IEMA). J Mech Behav Biomed Mater. 2014;35:1–8.
  • Viljanen EK, Skrifvars M, Vallittu PK. Degree of conversion of an experimental monomer and methyl methacrylate copolymer for dental applications. J Appl Polym Sci. 2004;93(4):1908–1912.
  • Viljanen EK, Lassila LVJ, Skrifvars M, et al. Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: a statistical modeling. Dent Mater. 2005;21(2):172–177.
  • Viljanen EK, Skrifvars M, Vallittu PK. Dendrimer/methyl methacrylate copolymers: residual methyl methacrylate and degree of conversion. J Biomater Sci Polym Ed. 2005;16(10):1219–1231.
  • Viljanen EK, Langer S, Skrifvars M, et al. Analysis of residual monomers by HPLC and HS-GC/MS. Dent Mater. 2006;22(9):845–851.
  • Viljanen EK, Skrifvars M, Vallittu PK. Dendritic copolymers and particulate filler composites for dental applications: degree of conversion and thermal properties. Dent Mater. 2007;23(11):1420–1427.
  • Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–970.
  • Lu H, Stansbury JW, Nie J, et al. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials. 2005;26(12):1329–1336.
  • Moszner N, Fischer UK, Angermann J. New diluents for dental composites. Macromol Mater Eng. 2016;301(6):750–759.
  • Luo S, Liu F, He J. Preparation of low shrinkage stress dental composite with synthesized dimethacrylate oligomers. J Mech Behav Biomed Mater. 2019;94:222–228.
  • Yamasaki L, De Vito Moraes AG, Barros M, et al. Polymerization development of “low-shrink” resin composites: reaction kinetics, polymerization stress and quality of network. Dent Mater. 2013;29(9):e169–e179.
  • Vitale A, Sangermano M, Bongiovanni R, et al. Visible light curable restorative composites for dental application based on epoxy monomer. Materials. 2014;7(1):554–562.
  • Li Z, Zhang H, Xiong G, et al. A low-shrinkage dental composite with epoxy-polyheral oligomeric silsesquioxane. J Mech Behav Biomed Mater. 2020;103:103515.
  • Xing A, Sun Q, Meng Y, et al. A hydroxyl-containing hyperbranched polymer as multi-purpose modifier for a dental epoxy. React Funct Polym. 2020;149:104505.
  • Sun X, Li Y, Xiong J, et al. Shrinkage properties of a modified dental resin composites containing a novel sprio-orthocarbonate expanding monomer. Mater Lett. 2011;65(23–24):3586–3589.
  • Fu J, Liu W, Hao Z, et al. Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. IJMS. 2014;15(2):2400–2412.
  • Duarte MLB, Medina LAR, Reyes PT, et al. Dental restorative composites containing methacrylic spiroorthocarbonate monomers as antishrinking matrixes. J Appl Polym Sci. 2018;135:47114.
  • Wang Z, Zhang X, Yao S, et al. Development of low-shrinkage dental adhesive via blending with spiroorthocarbonate expanding monomer and unsaturated epoxy resin monomer. J Mech Behav Biomed Mater. 2022;133:105308.
  • Marx P, Wiesbrock F. Expanding monomers as anti-shrinkage additives. Polymers. 2021;13(5):806.
  • Lai H, Peng X, Li L, et al. Novel monomers for photopolymer networks. Prog Polym Sci. 2022;128:101529.
  • Catel Y, Fischer U, Fässler P, et al. Bis(4-methoxybenzoyl)diethylgermane: a highly efficient photoinitiator for the polymerization of vinylcyclopropanes. Macromol Chem Phys. 2016;217(24):2686–2691.
  • Catel Y, Fässler P, Fischer U, et al. Evaluation of difunctional vinylcyclopropanes as reactive diluents for the development of low-shrinkage composites. Macromol Mater Eng. 2017;302(7):1700021.
  • Catel Y, Fässler P, Fischer U, et al. Synthesis and polymerization of vinylcyclopropanes bearing urethane groups for the development of low-shrinkage composites. Eur Polym J. 2018;98:439–447.
  • Boaro LC, Goncalves F, Guimaraes TC, et al. Sorption, solubility, shrinkage and mechanical properties of “low shrinkage” commercial resin composites. Dent Mater. 2013;29(4):398–404.
  • Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21(1):68–74.
  • Van Ende A, De Munck J, Mine A, et al. Does a low-shrinkaing composite induce less stress at the adhesive interface? Dent Mater. 2010;26(3):215–222.
  • Gönülol N, Kalyoncuoğlu E, Ertaş E, et al. Clinical evaluation of a low-shrinkage resin composite in endodontically treated premolar: 3-year follow-up. Clin Oral Investig. 2019;23(5):2323–2330.
  • Stansbury JW. Cyclopolymerizable monomers for use in dental resin composites. J Dent Res. 1990;69(3):844–848.
  • Peer G, Kury M, Gorsche C, et al. Revival of cyclpolymerizable monomers as low-shrinkage cross-linkers. Macromolecules. 2020;53(19):8374–8381.
  • Luo S, Liu F, Yu B, et al. Preparation of low shrinkage stress Bis-GMA free dental resin composites with a synthesized urethane dimethacrylate monomer. J Biomater Sci Polym Ed. 2019;30(2):137–149.
  • Wang X, Huyang G, Palagummi SV, et al. High performance dental resin composites with hydrolytically stable monomers. Dent Mater. 2018;34(2):228–237.
  • González-López JA, Fonseca-García A, Acosta-Ortiz R, et al. Photopolymerization dental composite resins with lower shrinkage stress and improved hydrolytic and hydroscopic behavior with a urethane monomer used as an additive. J Mech Behav Biomed Mater. 2022;130:105189.
  • He J, Garoushi S, Säilynoja E, et al. The effect of adding a new monomer “phene” on the polymerization shrinkage reduction of a dental resin composite. Dent Mater. 2019;35(4):627–635.
  • He J, Garoushi S, Säilynoja E, et al. Physicochemical properties of dimethacrylate resin composites with comonomer of hexa/tri-ethylene glycol bis(carbamate-isoproply-α-methylstyrene). J Mech Behav Biomed Mater. 2020;108:103832.
  • Lowry GG. Radical-initiated homopolymerization of α-Methylstyrene. J Polym Sci. 1958;31(122):187–188.
  • Lu H, Carioscia JA, Stansbury JW, et al. Investigation of step-growth thiol-ene polymerization for novel dental restoratives. Dent Mater. 2005;21(12):1129–1136.
  • Lee TY, Smith Z, Reddy SK, et al. Thiol-allyl ether-methacrylate ternary systems. Polymerization mechanism. Macromolecules. 2007;40(5):1466–1472.
  • Reinelt S, Tabatabai M, Moszner N, et al. Synthesis and photopolymerization of thiol-modified triazine-based monomers and oligomers for use in thiol-ene-based dental composites. Macromol Chem Phys. 2014;215(14):1415–1425.
  • Cramer NB, Couch CL, Schreck KM, et al. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials. Dent Mater. 2010;26(1):21–28.
  • Cramer NB, Couch C, Schreck KM, et al. Properties of methacrylate-thiol-ene formulations as dental restorative materials. Dent Mater. 2010;26:799–806.
  • Beigi S, Yeganeh H, Atai M. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites. Dent Mater. 2013;29(7):777–787.
  • Fu W, Wang L, He J. Evaluation of mechanical properties and shrinkage stress of thiol-ene-methacrylate dental composites with synthesized fluorinated allyl ether. J Mech Behav Biomed Mater. 2019;95:53–59.
  • Yu B, He J, Garoushi S, et al. Enhancing toughness and reducing volumetric shrinkage for Bis-GMA/TEGDMA resin systems by using hyperbranched thiol oligomer HMDI-6SH. Materials. 2021;14(11):2817.
  • Shah PK, Stansbury JW, Bowman CN. Application of an addition-fragmentation-chain transfer monomer in di(meth)acrylate network formation to reduce polymerization shrinkage stress. Polym Chem. 2017;8(30):4339–4351.
  • Park HY, Kloxin CJ, Abuelyaman AS, et al. Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer. Dent Mater. 2012;28(11):1113–1119.
  • Lamparth I, Wottawa D, Angermann J, et al. Synthesis of allyl sufones bearing urethane groups as efficient addition-fragmentation chain transfer agents for the development of low-shrinkage composites. Eur Polym J. 2021;158:110672.
  • Grob B, Frieser B, Liska R, et al. Evaluation of allyl sulfides bearing methacrylate group as addition-fragmentation chain transfer agents for low shrinkage dental composites. Eur Polym J. 2022;181:111699.
  • Auschill TM, Arweiler NB, Brecx M, et al. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci. 2002;110(1):48–53.
  • Beyth N, Domb AJ, Weiss E. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007;35(3):201–206.
  • Zhang K, Wang S, Zhou X, et al. Effect of antibacterial dental adhesive on multispecies biofilms formation. J Dent Res. 2015;94(4):622–629.
  • Al-Qarni FD, Tay F, Weir MD, et al. Protein-repelling adhesive resin containing calcium phosphate nanoparticles with repeated ion-recharge and re-releases. J Dent. 2018;78:91–99.
  • Boaro LCC, Campos LM, Varca GHC, et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater. 2019;35(6):909–918.
  • Lahdenperä MS, Puska MA, Alander PM, et al. Release of chlorhexidine digluconate and flexural properties of glass fibre reinforced provisional fixed partial denture polymer. J Mater Sci Mater Med. 2004;15:1349–1353.
  • Al-Musallam TA, Evans CA, Drummond JL, et al. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop. 2006;129(2):245–251.
  • Othman HF, Wu CD, Evans CA, et al. Evaluation of antimicrobial properties of orthodontic composite resins combined with benzalkonium chloride. Am J Orthod Dentofacial Orthop. 2002;122(3):288–294.
  • Chen L, Sun BI, Yang J. Antibacterial dental restorative materials: a review. Am J Dent. 2018;31:6B–12B.
  • Imazato S. Immobilization of an antibacterial component in composite resin. Dent Jpn. 1993;30:63–68.
  • Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994;73(8):1437–1443.
  • Imazato S, Kinomoto Y, Tarumi H, et al. Incorporation of antibacterial monomer MDPB in dentin primer. J Dent Res. 1997;76(3):768–772.
  • Imazato S, Ehara A, Torii M, et al. Antibacterial activity of dentine primer containing MDPB after curing. J Dent. 1998;26(3):267–271.
  • Imazato S, Torii M, Takatsuka T, et al. Bactericidal effect of dentin primer containing antibacterial monomer methacryloloxydodecylpyridinium bromide (MDPB) against bacteria in human carious dentin. J Oral Rehabil. 2001;28(4):314–319.
  • He J, Söderling E, Österblad M, et al. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. Molecules. 2011;16(11):9755–9763.
  • He J, Söderling E, Lassila LVJ, et al. Incorporation of antibacterial and radiopaque monomer into dental resin system. Dent Mater. 2012;28(8):e110–e117.
  • He J, Söderling E, Vallittu PK, et al. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM). J Biomater Sci Polym Ed. 2013;24(5):565–573.
  • He J, Söderling E, Vallittu PK, et al. Preparation and evaluation of dental resin with antibacterial and radio-opaque functions. IJMS. 2013;14(3):5445–5460.
  • Duarte de Oliveira FJ, Ferreira da Silva Filho PS, Costa MJF, et al. A comprehensive review of the antibacterial activity of dimethylaminohexadecyl methactylate (DMAHDM) and its influence on mechanical properties of resin-based dental materials. Jpn Dent Sci Rev. 2021;57:60–70.
  • Wang L, Xie X, Imazato S, et al. A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontits-related pathogens. Mater Sci Eng C. 2016;67:702–710.
  • Zhang N, Zhang K, Melo MAS, et al. Effects of long-term water-aging on novel anti-biofilm and protein-repellent dental composite. IJMS. 2017;18(1):186.
  • Cherchali FZ, Mouzali M, Tommasino JB, et al. Effectiveness of the DHMAI monomer in the development of antibacterial dental composite. Dent Mater. 2017;33(12):1381–1391.
  • Vidal ML, Rego GF, Viana GM, et al. Physical and chemical properties of model composites containing quaternary ammonium methacrylates. Dent Mater. 2018;34(1):143–151.
  • Huang L, Xiao Y, Xing X, et al. Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch Oral Biol. 2011;56(4):367–373.
  • Antonucci JM, Zeiger DN, Tang K, et al. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental application. Dent Mater. 2012;28(2):219–228.
  • Liang X, Huang Q, Liu F, et al. Synthesis of novel antibacterial monomer (UDMQA) and their potential application in dental resin. J Appl Polym Sci. 2013;129(6):3373–3381.
  • He J, Söderling E, Lassila LVJ, et al. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater. 2014;30(9):968–976.
  • Liang X, Soderling E, Liu F, et al. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci mater Med. 2014;25(5):1387–1393.
  • He J, Soderling E, Lassila LVJ, et al. Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dent Mater. 2015;31(5):575–582.
  • Li S, Yu X, Liu F, et al. Synthesis of antibacterial dimethacrylate derived from niacin and its application in preparing antibacterial dental resin system. J Mech Behav Biomed Mater. 2020;102:103521.
  • Huang Q, He J, Lin Z, et al. Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomers. J Mech Behav Biomed Mater. 2016;56:68–76.
  • Fanfoni L, Marsich E, Turco G, et al. Development of dimethacrylate quaternary ammonium monomers with antibacterial activity. Acta Biomater. 2021;129:138–147.
  • He X, Ye L, He R, et al. Antibacterial dental resin composites (DRCs) with synthesized bis-quaternary ammonium monomethacrylates as antibacterial agents. J Mech Behav Biomed Mater. 2022;135:105487.
  • Ebi N, Imazato S, Noiri Y, et al. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater. 2001;17(6):485–491.
  • Imazato S, Ebi N, Takahashi Y, et al. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003;24(20):3605–3609.
  • Luo W, Huang Q, Liu F, et al. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin. J Mech Behav Biomed Mater. 2015;49:61–68.
  • Zhu W, Lao C, Luo S, et al. Mechanical and antibacterial properties of benzothiazole-based dental resin materials. J Biomater Sci Polym Ed. 2018;29(6):635–645.
  • Caneli G, Chen Y, Sungsoo N, et al. A dental filling composite resin restorative with improved antibacterial function and hardness. J Compos Mater. 2021;55(2):159–168.
  • Almaroof A, Rojo L, Mannocci F, et al. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration. Dent Mater. 2016;32(2):149–160.
  • Almaroof A, Niazi SA, Rojo L, et al. Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration. Dent Mater. 2016;32(7):929–939.
  • Al-Odayni AB, Saeed WS, Ahmed AYBH, et al. New monomer based on eugenol methacrylate, synthesis, polymerization and copolymerization with methyl methacrylate-characterization and thermal properties. Polymers. 2020;12(1):160.
  • Al-Odayni AB, Alotaibi DH, Saeed WS, et al. Eugenyl-2-hydroxypropyl methacrylate-incorporated experimental dental composite: degree of polymerization and in vitro cytotoxicity evaluation. Polymers. 2022;14(2):277.
  • Alrahlah A, Al-Odayni AB, Saeed WS, et al. Water sorption, water solubility, and rheological properties of resin-based dental composites incorporating immobilizable eugenol-derivative monomer. Polymers. 2022;14(3):366.
  • Zhang L, Ma Z, Wang R, et al. Synthesis and characterization of methacrylate-funcitonalized botulin derivatives as antibacterial comonomer for dental restorative resins. ACS Biomater Sci Eng. 2021;7(7):3132–3140.
  • Kilian M, Chapple ILC, Hannig M, et al. The oral microbiome-an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–666.
  • Gyo M, Nikaido T, Okada K, et al. Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol. 2008;74(5):1428–1435.
  • Absolom DR, Lamberti FV, Policova Z, et al. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 1983;46(1):90–97.
  • Uyen M, Busscher HJ, Weerkamp AH, et al. Surface free energies of oral streptococci and their adhesion to solids. FEMS Microbiol Lett. 1985;30:103–106.
  • Quirynen M, Marechal M, Busscher HJ, et al. The influence of surface free energy and surface roughness on early plaque formation. J Clin Periodontol. 1990;17(3):138–144.
  • Santiago A, Martin L, Iruin JJ, et al. Microphase separation and hydrophobicity of urethane/siloxane copolymers with low siloxane content. Prog Org Coat. 2014;77:798–802.
  • Santiago A, Irusta L, Schafer T, et al. Resistance to protein sorption as a model of antifouling performance of poly(siloxane-urethane) coatings exhibiting phase separated morphologies. Prog Org Coat. 2016;99:110–116.
  • Tong H, Liao M, Huang X, et al. Physicochemical properties, anti-adhesion effect against S. mutans, and resistance to mucin adsorption of dental resins contained synthesized silicone methacrylates. Silicon. 2022;14:5835–5845.
  • Tong H, Yu X, Shi Z, et al. Physicochemical properties, bond strength and dual-species biofilm inhibition effect of dental resin composites with branched silicone methacrylate. J Mech Behavr Biomed Mater. 2021;116:104368.
  • Liao M, Tong H, Huang X, et al. Mechanical properties, biocompatibility and anti-bacterial adhesion property evaluation of silicone-containing resin composite with different formulae. J Renew Mater. 2022;10:3201–3215.
  • Zhang S, Liao M, Liu F, et al. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J Mech Behav Biomed Mater. 2022;131:105263.
  • Zhang N, Melo MAS, Bai Y, et al. Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine. J Dent. 2014;42:1284–1291.
  • Zhang N, Chen C, Melo MAS, et al. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine. Int J Oral Sci. 2015;7:103–109.
  • Zhang N, Ma J, Melo MAS, et al. Protein-repellent and antibacterial dental composite to inhibit biofilm and caries. J Dent. 2015;43:225–234.
  • Pekkan G, Pekkan K, Hatipoglu MG, et al. Comparative radiopacity of ceramics and metals with human and bovine dental tissues. J Prosthet Dent. 2011;106:109–117.
  • Rendenbach C, Schöllen M, Bueschel J, et al. Evaluation and reduction of magnetic resonance imaging artifacts induced by distinct plates for osseous fixation. an in vitro study @3T. Dentomaxillofac Radiol. 2018;47:20170361.
  • Kuusisto N, Huumonen S, Kotiaho A, et al. Intensity of artefacts in cone beam CT examinatiuons caused by titanium and glass fiber-reinforced composite implants. Dentomaxillofac Radiol. 2019;48:20170471.
  • Yildirim D, Ermis RB, Gormez O, et al. Comparison of radiopacities of different flowable resin composites. J Oral Maxillofac Radiol. 2014;2:21–25.
  • Garoushi S, Vallittu P, Lassila L. Mechanical properties and radiopacity of flowable fiber-reinforced composite. Dent Mater J. 2019;38:196–202.
  • Issa SAM. Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system. Radiat Phys Chem. 2016;120:33–37.
  • He J, Vallittu PK, Lassila LV. Preparation and characterization of high radio-opaque E-glass fiber-reinforced composite with iodine containing methacrylate monomer. Dent Mater. 2017;33:218–225.
  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30:293–342.
  • Li YJ, Song TB, Cai YY, et al. Bisphenol a exposure induces apoptosis and upregulation of fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci. 2009;108:427–436.
  • Meeker JD, Ehrlich S, Toth TL, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol a among men from an infertility clinic. Reprod Toxicol. 2010;30:532–539.
  • Li DK, Zhou Z, Miao M, et al. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011;195:625–630.
  • Izumi Y, Yamaguchi K, Ishikawa T, et al. Molecular changes induced by bisphenol-A in rat sertoli cell culture. Syst Biol Reprod Med. 2011;57:228–232.
  • Fugolin AP, de Paula AB, Dobson A, et al. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36:884–892.
  • Polydorou O, Schmidt OC, Spraul M, et al. Detection of bisphenol a in dental wastewater after grinding of dental resin composites. Dent Mater. 2020;36:1009–1018.
  • De Nys S, Duca RC, Verliet P, et al. Bisphenol a as degradation product of monomers used in resin-based dental materials. Dent Mater. 2021;37:1020–1029.
  • Liang X, Liu F, He J. Synthesis of none bisphenol a structure dimethacrylate monomer and characterization for dental composite applications. Dent Mater. 2014;30:917–925.
  • Yu B, Liu D, Liu F, et al. Preparation and characterization of light-cured dental resin without methacrylate monomers derived from bisphenol A. Adv Polym Technol. 2014;33:21417.
  • Yin M, Guo S, Liu F, et al. Synthesis of fluorinated dimethacrylate monomer and its application in preparing Bis-GMA free dental resin. J Mech Behav Biomed Mater. 2015;51:337–344.
  • Yuan S, Liu F, He J. Preparation and characterization of low polymerization shrinkage and Bis-GMA-free dental resin system. Adv Polym Technol. 2015;34:21503.
  • Yu B, Liu F, He J, et al. Preparation of Bis-GMA-free dental restorative composites with dendritic macromer (G-IEMA). Adv Polym Technol. 2015;34:21519.
  • Vaidyanathan TK, Vaidyanathan J. Visible light cure characteristics of cycloaliphatic polyester dimethacrylate alternative oligomer to bisGMA. Acta Biomater Odontol Scand. 2015;1:59–65.
  • Ding Y, Li B, Wang M, et al. Bis-GMA free dental material based on UDMA/SR833s dental resin system. Adv Polym Technol. 2016;35:396–401.
  • Yin M, Liu F, He J. Preparation and characterization of Bis-GMA free dental resin system with synthesized dimethacrylate monomer TDDMMA derived from tricyclo[5.2.1.0(2,6)]-decanedimethanol. J Mech Behav Biomed Mater. 2016;57:157–163.
  • He J, Kopperud HM. Preparation and characterization of Bis-GMA-free dental composites with dimethacrylate monomer derived from 9,9-Bis[4-(2-hydroxyethoxy)- phenyl]fluorene. Dent Mater. 2018;34:1003–1013.
  • Liu X, Wang Z, Zhao C, et al. Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption. J Mech Behav Biomed Mater. 2018;77:446–454.
  • Wang T, Matinlinna JP, He J, et al. Biomechanical and biological evaluations of novel BPA-free fiber-reinforced composites for biomedical applications. Mater Sci Eng C. 2020;117:111309.
  • Yoshinaga K, Yoshihara K, Yoshida Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent Mater. 2021;37:e391–e398.
  • Zhang X, Ma X, Liao M, et al. Properties of Bis-GMA free bulk-filled resin composite based on high refractive index monomer Bis-EFMA. J Mech Behav Biomed Mater. 2022;134:105372.
  • Jun S, Cha J-R, Knowles JC, et al. Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent Mater. 2020;36:157–166.
  • Sun Y, Zhou Z, Jiang H, et al. Preparation and evaluation of novel bio-based Bis-GMA-free dental composites with low estrogenic activity. Dent Mater. 2022;38(2):281–293.
  • Sun Y, Sun L, Hong L, et al. Bio-based non-estrogenic dimethacrylate dental composites from cloves. J Dent Res. 2022;101:1613–1619.