1,212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review

, &
Article: 2244982 | Received 05 Jun 2023, Accepted 01 Aug 2023, Published online: 18 Aug 2023

References

  • Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7(3):16. doi: 10.3390/jfb7030016.
  • Mount GJ. Color atlas of glass ionomer cement. 2nd ed. London: Martin Dunitz; 2002.
  • Seth S. Glass ionomer cement and resin-based fissure sealants are equally effective in caries prevention. J Am Dent Assoc. 2011;142(5):551–552. doi: 10.14219/jada.archive.2011.0225.
  • Millett DT, McCabe JF. Orthodontic bonding with glass ionomer cement – a review. Eur J Orthodont. 1996;18:385–399.
  • Wilson AD, Crisp S, Ferner AJ. Reactions in glass-ionomer cements. IV. Effect of chelating comonomers on setting behaviour. J Dent Res. 1976;55(3):489–495. doi: 10.1177/00220345760550033101.
  • Nicholson JW. An infrared spectroscopic study of the interaction of metal salts with an acrylic acid/maleic acid copolymer. J Appl Polym Sci. 2000;78(9):1680–1684. doi: 10.1002/1097-4628(20001128)78:9<1680::AID-APP140>3.0.CO;2-9.
  • Nicholson JW, Czarnecka B. Conventional glass-ionomer cements (Ch 6). In: Materials for the direct restoration of teeth. Duxford (UK): Woodhead Publishing; 2016. p. 107–136.
  • Crisp S, Lewis BG, Wilson AD. Characterisation of glass-ionomer cements 3. Effect of polyacid concentration on the physical properties. J Dent. 1977;5(1):51–56. doi: 10.1016/s0300-5712(77)80025-0.
  • Mitra SB. Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. J Dent Res. 1991;70(1):72–74. doi: 10.1177/00220345910700011201.
  • Malik Z, Butt DQ, Butt ZQ, et al. Evolution of anticariogenic resin-modified glass ionomer cements. ChemBioEng Rev. 2021;8(4):326–336. doi: 10.1002/cben.202100005.
  • Berzins DW, Abey S, Costache MC, et al. Resin-modified glass-ionomer setting reaction competition. J Dent Res. 2010;89(1):82–86. doi: 10.1177/0022034509355919.
  • Griffin SC, Hill RG. Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorine content. Biomaterials. 2000;21:693–698.
  • Wilson AD, Crisp S, Prosser HJ, et al. Aluminosilicate glasses for polyelectrolyte cements. Ind Eng Chem Prod Res Dev. 1980;19(2):263–270. doi: 10.1021/i360074a027.
  • Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19(6):485–494. doi: 10.1016/s0142-9612(97)00128-2.
  • Duminis T, Shahid S, Karpukhina NG, et al. Predicting refractive index of fluoride containing glasses for aesthetic dental restorations. Dent Mater. 2018;34(5):e83–e88. doi: 10.1016/j.dental.2018.01.024.
  • Wilson AD. A hard decade’s work: steps in the invention of the glass-ionomer cement. J Dent Res. 1996;75(10):1723–1727. doi: 10.1177/00220345960750100301.
  • Cabral MFC, de Menezes Martinho RL, Guedes-Neto MV, et al. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements? Restor Dent Endod. 2015;40(3):209–215. doi: 10.5395/rde.2015.40.3.209.
  • Neti B, Sayana G, Muddala L, et al. Fluoride releasing restorative materials: a review. Int J Dent Mater. 2020;2(1):19–23. doi: 10.37983/IJDM.2020.2104.
  • Crisp S, Lewis BG, Wilson AD. Glass ionomer cements. Chemistry of erosion. J Dent Res. 1976;55(6):1032–1041. doi: 10.1177/00220345760550060501.
  • Forsten L. Fluoride release from a glass ionomer cement. Scand J Dent Res. 1977;85(6):503–504. doi: 10.1111/j.1600-0722.1977.tb00586.x.
  • Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials – fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343–362. doi: 10.1016/j.dental.2006.01.022.
  • Wilson AD, Groffman DM, Fowls DB, et al. The release of fluoride and other chemical species from a glass-ionomer cement. Biomaterials. 1986;7(1):55–60. doi: 10.1016/0142-9612(86)90090-6.
  • Braden M, Tay WM. Fluoride ion diffusion from polyalkenoate (glass-ionomer) cements. Biomaterials. 1988;9(5):454–456. doi: 10.1016/0142-9612(88)90012-9.
  • De Moor RJG, Verbeeck RMH, De Maeyer EAP. Fluoride release profiles of restorative glass ionomer formulations. Dent Mater. 1996;12(2):88–95. doi: 10.1016/S0109-5641(96)80074-1.
  • De Witte AM, De Maeyer EA, Verbeeck RM, et al. Fluoride release profiles of mature restorative glass ionomer cements after fluoride application. Biomaterials. 2000;21(5):475–482. doi: 10.1016/s0142-9612(99)00188-x.
  • Forss H. Release of fluoride and other elements from light-cured glass ionomers in neutral and acidic conditions. J Dent Res. 1993;72(8):1257–1262. doi: 10.1177/00220345930720081601.
  • Czarnecka B, Limanowska-Shaw H, Nicholson JW. Buffering and ion release by a glass-ionomer cement under near-neutral and acidic conditions. Biomaterials. 2002;23(13):2783–2788. doi: 10.1016/s0142-9612(02)00014-5.
  • Czarnecka B, Nicholson JW. Ion release by resin-modified glass-ionomer cements into water and lactic acid solutions. J Dent. 2006;34(8):539–543. doi: 10.1016/j.jdent.2005.08.007.
  • Hill RG, de Barra E, Griffin S, et al. Ion release from glass polyalkenoate (ionomer) cements. Key Eng Mater. 1995;99–100:315–322. doi: 10.4028/www.scientific.net/KEM.99-100.315.
  • Hill RG. Glass ionomer polyalkenoate cements and related materials: past, present and future. Br Dent J. 2022;232(9):653–657. doi: 10.1038/s41415-022-4239-1.
  • Guida A, Hill RG, Towler MR, et al. Fluoride release from model glass ionomer cements. J Mater Sci Mater Med. 2002;13(7):645–649. doi: 10.1023/a:1015777406891.
  • Lewis SM, Czarnecka B, Coleman NJ, et al. Interaction of aluminium fluoride complexes derived from glass-ionomer cements with hydroxyapatite. Ceram Silikaty. 2013;57:196–200.
  • Nagy G, Nagy L. Ch 6: halogens. In: Nollet LML, de Gelder LSP, editors. Handbook of water analysis. Boca Raton (FL): CRC Press; 2007. p. 157–200.
  • Jackson GE. The existence of AlF4– in aqueous solution and its relevance to phosphorylase reactions. Inorg Chim Acta. 1988;151(4):273–276. doi: 10.1016/S0020-1693(00)90812-0.
  • Nicholson JW, Coleman NJ, Sidhu SK. The kinetics of ion release from conventional glass-ionomer dental cements. J Mater Sci Mater Med. 2021;32:30.
  • Hatibović-Kofman S, Koch G, Ekstrand J. Glass ionomer materials as a rechargeable fluoride release system. Int J Paediatr Dent. 1997;7(2):65–73. doi: 10.1111/j.1365-263x.1997.tb00281.x.
  • Xu X, Burgess JO. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials. 2003;24(14):2451–2461. doi: 10.1016/s0142-9612(02)00638-5.
  • Dionysopoulos D, Koliniotou KE, Helvatzoglou AM, et al. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J. 2013;32(2):296–304. doi: 10.4012/dmj.2012-144.
  • Dasgupta S, Saraswathi MV, Somayaji K, et al. Comparative evaluation of fluoride release and recharge potential of novel and traditional fluoride-releasing restorative materials: an in vitro study. J Conserv Dent. 2018;21(6):622–626. doi: 10.4103/JCD.JCD_338_18.
  • Rolim FG, de Araújo Lima AD, Campos ICL, et al. Fluoride release of fresh and aged glass ionomer cements after recharging with high-fluoride dentifrice. Int J Dent. 2019;2019:9785364. doi: 10.1155/2019/9785364.
  • Czarnecka B, Nicholson JW. Maturation affects fluoride uptake by glass-ionomer dental cements. Dent Mater. 2012;28(2):e1–e5. doi: 10.1016/j.dental.2011.10.011.
  • Bueno LS, Borges AFS, Navarro MFL, et al. Determination of chemical species of fluoride during uptake mechanism of glass-ionomer cements with NMR spectroscopy. Dent Mater. 2021;37(7):1176–1182. doi: 10.1016/j.dental.2021.04.011.
  • Billington RW, Hadley PC, Towler MR, et al. Effects of adding sodium and fluoride ions to glass-ionomer on its interactions with sodium fluoride solution. Biomaterials. 2000;21(4):377–383. doi: 10.1016/s0142-9612(99)00199-4.
  • Weidlich P, Mianda LA, Maltz M, et al. Fluoride release and uptake from glass ionomer cements and composite resins. Braz Dent J. 2000;11:89–96.
  • Pawluk K, Booth SE, Coleman NJ, et al. The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride. J Mater Sci Mater Med. 2008;19(9):3035–3039. doi: 10.1007/s10856-008-3443-0.
  • Mousavinasab SM, Meyers I. Fluoride release and uptake by glass ionomer cements, compomers and giomers. Res J Biol Sci. 2009;4:609–616.
  • Madi F, Sidhu SK, Nicholson JW. The effect of temperature and ionic solutes on the fluoride release and recharge of glass-ionomer cements. Dent Mater. 2020;36(1):e9–e14. doi: 10.1016/j.dental.2019.11.018.
  • Rothwell M, Anstice HM, Pearson GJ. The uptake and release of fluoride by ion-leaching cements after exposure to toothpaste. J Dent. 1998;26(7):591–597. doi: 10.1016/s0300-5712(97)00035-3.
  • Rao BSR, Moosani GKR, Shanmugaraj M, et al. Fluoride release and uptake of five dental restoratives from mouthwashes and dentifrices. J Int Oral Health. 2015;7:1–5.
  • Czarnecka B, Nicholson JW. Uptake of fluoride by glass-ionomer dental cements from a commercial fluoridated mouthwash. Ceram Silikaty. 2018;62:158–162. doi: 10.13168/cs.2018.0007.
  • Diaz-Arnold AM, Holmes DC, Wistrom DW, et al. Short-term fluoride release/uptake of glass ionomer restoratives. Dent Mater. 1995;11(2):96–101. doi: 10.1016/0109-5641(95)80041-7.
  • Neelakantan P, John S, Anand S, et al. Fluoride release from a new glass-ionomer cement. Oper Dent. 2011;36(1):80–85. doi: 10.2341/10-219-LR.
  • Bueno LS, Silva RM, Magalhães APR, et al. Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dent Mater. 2019;35(1):135–143. doi: 10.1016/j.dental.2018.11.007.
  • El Mallakh BF, Sarkar NK. Fluoride release from glass-ionomer cements in de-ionized water and artificial saliva. Dent Mater. 1990;6(2):118–122. doi: 10.1016/s0109-5641(05)80041-7.
  • Helvatjoglu-Antoniades M, Karantakis P, Papadogiannis Y, et al. Fluoride release from restorative materials and a luting cement. J Prosthet Dent. 2001;86(2):156–164. doi: 10.1067/mpr.2001.116778.
  • Nagi SM, Moharam LM, El Hoshy AZ. Fluoride release and recharge of enhanced resin-modified glass ionomer at different time intervals. Future Dent J. 2018;4(2):221–224. doi: 10.1016/j.fdj.2018.06.005.
  • Morales-Valenzuela AA, Scougall-Vilchis RJ, Lara-Carrillo E, et al. Enhancement of fluoride release in glass ionomer cements modified with titanium dioxide nanoparticles. Medicine. 2022;101(44):e34134. doi: 10.1097/MD.0000000000031434.
  • Robinson C, Shore RC, Brookes SJ, et al. The chemistry of enamel caries. Crit Rev Oral Biol Med. 2000;11(4):481–495. doi: 10.1177/10454411000110040601.
  • Kaufman HW, Kleinberg I. Studies on the incongruent solubility of hydroxyapatite. Calcif Tissue Int. 1979;27(2):143–151. doi: 10.1007/BF02441177.
  • Hojo S, Takahashi N, Yamada T. Acid profile in caries dentin. J Dent Res. 1991;70(3):182–186. doi: 10.1177/00220345910700030501.
  • Marsh PD. Dental plaque as a biofilm: the significance of pH in health and caries. Compend Contin Educ Dent. 2009;30(2):76–78.
  • García-Godoy F, Hicks MJ. Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc. 2008;139:25–34.
  • Hojo S, Komatsu M, Okuda R, et al. Acid profiles and pH of in carious dentin in active and arrested lesions. J Dent Res. 1994;73(12):1853–1857. doi: 10.1177/00220345940730121001.
  • Shaheen M, Aswin S, Thomas AJ. Recent advances in enamel and dentin remineralization. Int J Oral Care Res. 2021;9(2):63–65. doi: 10.4103/INJO.INJO_15_21.
  • Ionescu AC, Degli Esposti L, Iafisco M, et al. Dental tissue remineralization by bioactive calcium phosphate nanoparticles formulations. Sci Rep. 2022;12(1):5994. doi: 10.1038/s41598-022-09787-5.
  • Lacruz RS, Habelitz S, Wright JT, et al. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017;97(3):939–993. doi: 10.1152/physrev.00030.2016.
  • Featherstone JBD. The continuum of dental caries – evidence for a dynamic disease process. J Dent Res. 2004;83(Special Issue C):C39–C42. doi: 10.1177/154405910408301s08.
  • Featherstone JBD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol. 1999;27(1):31–40. doi: 10.1111/j.1600-0528.1999.tb01989.x.
  • Ghilotti J, Fernandez I, Sanz JL, et al. Remineralization potential of three restorative glass ionomers: an in vitro study. J Clin Med. 2023;12:2434. doi: 10.3390/jcm12062434.
  • Liao Y, Brandt BW, Li J, et al. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol. 2017;9(1):1344509. doi: 10.1080/20002297.2017.1344509.
  • Hamilton IR. Biochemical effects of fluoride on oral bacteria. J Dent Res. 1990;69(2; Suppl.):660–667. doi: 10.1177/00220345900690S128.
  • Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: a review of the literature. World J Methodol. 2012;2(1):1–17. doi: 10.5662/wjm.v2.i1.1.
  • Shellis RP, Duckworth RM. Studies on the cariostatic mechanisms of fluoride. Int Dent J. 1994;44(3 Suppl. 1):263–273.
  • de Leeuw NH. Computer simulations of the structures and properties of the biomaterial hydroxyapatite. J Mater Chem. 2010;20(26):5376–5389. doi: 10.1039/b921400c.
  • Yehia A, Ezzat K. Fluoride uptake by synthetic apatites. Adsorp Sci Technol. 2009;27(3):337–347. doi: 10.1260/026361709789868910.
  • Christoffersen MR, Christoffersen J, Arends J. Kinetics of dissolution of calcium hydroxyapatite: VII. The effect of fluoride ions. J Cryst Growth. 1984;67(1):107–114. doi: 10.1016/0022-0248(84)90138-6.
  • Botelho JN, Del Bel Cury AA, Silva WJd, et al. Enamel remineralization: controlling the caries disease or treating the early caries lesions? Braz Oral Res. 2014;28(Suppl. 1):1–5. doi: 10.1590/S1806-83242014.50000007.
  • ten Cate JM. In vitro studies on the effects of fluoride on de- and remineralization. J Dent Res. 1990;69(2 Suppl.):614–619. doi: 10.1177/00220345900690S120.
  • Margolis HC, Moreno EC, Murphy BJ. Effect of low levels of fluoride in solution on enamel demineralisation in vitro. J Dent Res. 1986;65(1):23–29. doi: 10.1177/00220345860650010301.
  • Lynch RJM, Navada R, Walia R. Low levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int Dent J. 2004;54(5 Suppl. 1):304–309. doi: 10.1111/j.1875-595x.2004.tb00003.x.
  • Page DJ. A study of the effect of fluoride delivered from solution and dentifrices on enamel demineralization. Caries Res. 1991;25(4):251–255. doi: 10.1159/000261372.
  • Ingram GS, Edgar WM. Interactions of fluoride and non-fluoride agents with the caries process. Adv Dent Res. 1994;8(2):158–165. doi: 10.1177/08959374940080020501.
  • Gibbs CD, Atherton SE, Huntington E, et al. Effect of low levels of fluoride on calcium uptake by demineralised human enamel. Arch Oral Biol. 1995;40(9):879–881. doi: 10.1016/0003-9969(95)00041-m.
  • Lynch RJM, Mony U, ten Cate JM. De- and remineralisation of enamel lesions at low pH under simulated plaque-fluid conditions. Caries Res. 2004;38:399–400.
  • Walsh T, Worthington HV, Glenny AM, et al. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019;4:CD007868.
  • Burnett G, Nehme M, Parkinson C, et al. A randomized oral fluoride retention study comparing intra-oral kinetics of fluoride-containing dentifrices before and after dietary acid exposure. Arch Oral Biol. 2020;119:104891. doi: 10.1016/j.archoralbio.2020.104891.
  • Cury JA, de Oliveira BH, dos Santos APP, et al. Are fluoride releasing dental materials clinically effective on caries control? Dent Mater. 2016;32(3):323–333. doi: 10.1016/j.dental.2015.12.002.
  • Eichmiller FC, Marjenhoff WA. Fluoride-releasing dental restorative materials. Oper Dent. 1998;23(5):218–228.
  • Wilson AD, Batchelor RF. Dental silicate cements. I. The chemistry of erosion. J Dent Res. 1967;46(5):1075–1085. doi: 10.1177/00220345670460051501.
  • Mjör IA. Glass ionomer cement restorations and secondary caries: a preliminary report. Quintessence Int. 1996;27(3):171–174.
  • Wilson NHF, Burke FJT, Mjör IA. Reasons for placement and replacement of restorations of direct restorative materials by a selected group of practitioners in the United Kingdom. Quintessence Int. 1997;28(4):245–248.
  • Randall RC, Wilson NHF. Glass-ionomer restorations: a systematic review of secondary caries treatment effect. J Dent Res. 1999;78(2):628–637. doi: 10.1177/00220345990780020101.
  • Fricker JP. Therapeutic properties of glass-ionomer cements: their application to orthodontic treatment. Aust Dent J. 2022;67(1):12–20. doi: 10.1111/adj.12888.
  • Czochrowska E, Ogaard B, Duschner H, et al. Cariostatic effect of a light-cured, resin-modified glass-ionomer for bonding orthodontic brackets in vivo. J Orofac Orthop. 1998;59(5):265–273. doi: 10.1007/BF01321793.
  • Pascotto RC, Navarro MFL, Filho LC, et al. In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2004;125(1):36–41. doi: 10.1016/s0889-5406(03)00571-7.
  • Alirezaei M, Bagherian A, Shirazi AS. Glass ionomer cements as fissure sealants: yes or no? A systematic review and meta-analysis. J Am Dent Assoc. 2018;149(7):640–649.e9. doi: 10.1016/j.adaj.2018.02.001.
  • Pereira PN, Inokoshi S, Yamada T, et al. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass-ionomer cements. Dent Mater. 1998;14(3):179–185. doi: 10.1016/s0109-5641(98)00026-8.
  • Francci C, Deaton TG, Arnold RR, et al. Fluoride release from restorative materials and its effect on dentin demineralization. J Dent Res. 1999;78(10):1647–1654. doi: 10.1177/00220345990780101001.
  • Glasspole EA, Erikson RL, Davidson CL. Demineralization of enamel in relation to the fluoride release of materials. Am J Dent. 2001;141:8–12.
  • Benelli EM, Serra MC, Rodrigues AL Jr., et al. In situ cariogenic potential of glass ionomer cement. Caries Res. 1993;27(4):280–284. doi: 10.1159/000261551.
  • Forsten L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials. 1998;19(6):503–508. doi: 10.1016/s0142-9612(97)00130-0.
  • Ngo HC, Mount G, McIntyre J, et al. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006;34(8):608–613. doi: 10.1016/j.jdent.2005.12.012.
  • Tam LE, Chan GP, Yim D. In vitro caries inhibition effects by conventional and resin-modified glass-ionomer restorations. Oper Dent. 1997;22(1):4–14.
  • Mickenautsch S, Mount G, Yengopal V. Therapeutic effect of glass-ionomers: an overview of evidence. Aust Dent J. 2011;56(1):10–15; quiz 103. doi: 10.1111/j.1834-7819.2010.01304.x.
  • Jensen ME, Wefel JS. Human plaque pH responses to meals and effects of chewing gum. Br Dent J. 1989;167(6):204–208. doi: 10.1038/sj.bdj.4806971.
  • Matsui R, Cvitkovitch D. Acid tolerance mechanism utilized by Streptococcus mutans. Future Microbiol. 2010;5(3):403–417. doi: 10.2217/fmb.09.129.
  • Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev. 2003;26(5):493–510. doi: 10.1111/j.1574-6976.2003.tb00627.x.
  • Welin-Neilands J, Svensater G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol. 2007;73(17):5633–5638. doi: 10.1128/AEM.01049-07.
  • Marquis RE. Diminished acid tolerance of plaque bacteria caused by fluoride. J Dent Res. 1990;69:672–675; discussion 82–83. doi: 10.1177/00220345900690S130.
  • Forss H, Jokinen J, Spets-Happonen S, et al. Fluoride and mutans streptococci in plaque grown on glass ionomer and composite. Caries Res. 1991;25(6):454–458. doi: 10.1159/000261410.
  • Seppa L, Korhonen A, Nuutinen A. Inhibitory effect on S. mutans by fluoride-treated conventional and resin-reinforced glass ionomer cement. Eur J Oral Sci. 1995;103(3):182–185. doi: 10.1111/j.1600-0722.1995.tb00022.x.
  • Seppa L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of Streptococcus mutans Ingbritt. Caries Res. 1992;26(6):434–438. doi: 10.1159/000261483.
  • Nakajo K, Imazato S, Takahashi Y, et al. Fluoride released from glass-ionomer cement is responsible to inhibit acid production of caries-related oral streptococci. Dent Mater. 2009;25(6):703–708. doi: 10.1016/j.dental.2008.10.014.
  • Andrucioli MCD, Faria G, Nelson-Filho P, et al. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metal brackets. J Appl Oral Sci. 2017;25(2):196–202. doi: 10.1590/1678-77572016-0231.
  • Friedl KH, Schmalz G, Hiller KA, et al. Resin-modified glass ionomer cements, fluoride release and influence on Streptococcus mutans growth. Eur J Oral Sci. 1997;105(1):81–85. doi: 10.1111/j.1600-0722.1997.tb00184.x.
  • Kan KC, Messer LB, Messer HH. Variability in cytotoxicity and fluoride release of resin-modified glass ionomer cements. J Dent Res. 1997;76(8):1502–1507. doi: 10.1177/00220345970760081301.
  • Ca JN, Choi HM, Song KY. The reciprocal interaction between fluoride release of glass ionomers and acid production in Streptococcus mutans biofilm. J Oral Microbiol. 2022;14:2055267.
  • Wassel MO, Allam G. Anti-bacterial effect, fluoride release, and compressive strength of a glass ionomer containing silver and titanium nanoparticles. Indian J Dent Res. 2022;33(1):75–79. doi: 10.4103/ijdr.IJDR_117_20.
  • Koch G, Hatibović-Kofman S. Glass ionomer cements as a fluoride release system in vivo. Swed Dent J. 1990;14(6):267–273.
  • Hatibović-Kofman S, Koch G. Fluoride release from glass ionomer cement in vivo and in vitro. Swed Dent J. 1991;15(6):253–258.
  • Ayoob S, Gupta AK. Fluoride in drinking water: a review of the status and stress effects. Crit Rev Environ Sci Technol. 2006;36(6):433–487. doi: 10.1080/10643380600678112.
  • Heintze SD, Loguercio AD, Hanzen TA, et al. Clinical efficacy of resin-based direct posterior restorations and glass-ionomer restorations – an updated meta-analysis of clinical outcome parameters. Dent Mater. 2022;38(5):e109–e135. doi: 10.1016/j.dental.2021.10.018.