1,098
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A bioinformatics approach to study the role of calcium phosphate properties in bone regeneration

, , , , , & show all
Pages 499-530 | Received 10 Dec 2021, Accepted 09 Jul 2022, Published online: 26 Aug 2022

References

  • Anselme, K., & Bigerelle, M. (2011). Role of materials surface topography on mammalian cell response. International Materials Reviews, 56(4), 243–266. doi:10.1179/1743280411Y.0000000001
  • Arimochi, H., Sasaki, Y., Kitamura, A., & Yasutomo, K. (2016). Differentiation of preadipocytes and mature adipocytes requires PSMB8. Scientific Reports, 6, 26791. doi:10.1038/srep26791
  • Bai, J., Wioland, H., Advedissian, T., Cuvelier, F., Romet-Lemonne, G., & Echard, A. (2020). Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4169–4179. doi:10.1073/pnas.1911629117
  • Baker, B. A., Pine, P. S., Chatterjee, K., Kumar, G., Lin, N. J., McDaniel, J. H., … Simon, C. G. (2014). Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Biomaterials, 35(25), 6716–6726. doi:10.1016/j.biomaterials.2014.04.075
  • Barradas, A. M. C., Fernandes, H. A. M., Groen, N., Chai, Y. C., Schrooten, J., van de Peppel, J., … de Boer, J. (2012). A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials, 33(11), 3205–3215. doi:10.1016/j.biomaterials.2012.01.020
  • Barrère-de Groot, F., Yuan, H., & de Bruijn, J. D. (2018). Clinical relevance of sub-micron textured calcium phosphates for bone tissue regeneration. Materials Today: Proceedings, 5(7), 15501–15505.
  • Batra, U., Kapoor, S., & Sharma, S. (2013). Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite. Journal of Materials Engineering and Performance, 22(6), 1798–1806. doi:10.1007/s11665-012-0462-2
  • Bennett, J., & Weeds, A. (1986). Calcium and the cytoskeleton. British Medical Bulletin, 42(4), 385–390. doi:10.1093/oxfordjournals.bmb.a072156
  • Birgani, Z. T. (2016). Synthetic growth factors for bone regeneration. Enschede, the Netherlands: University of Twente.
  • Birgani, Z. T., Malhotra, A., van Blitterswijk, C. A., & Habibovic, P. (2016). Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. Journal of Biomedical Materials Research. Part A, 104(8), 1946–1960. doi:10.1002/jbm.a.35725
  • Bohner, M., & Miron, R. J. (2019). A proposed mechanism for material-induced heterotopic ossification. Materials Today, 22, 132–141. doi:10.1016/j.mattod.2018.10.036
  • Bu, W., & Su, L.-K. (2001). Regulation of microtubule assembly by human EB1 family proteins. Oncogene, 20(25), 3185–3192. doi:10.1038/sj.onc.1204429
  • Cai, S., Wu, C., Yang, W., Liang, W., Yu, H., & Liu, L. (2020). Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 9(1), 971–989. doi:10.1515/ntrev-2020-0076
  • Chande, S., & Bergwitz, C. (2018). Role of phosphate sensing in bone and mineral metabolism. Nature Reviews. Endocrinology, 14(11), 637–655. doi:10.1038/s41574-018-0076-3
  • Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997–1003. doi:10.1038/nmat2013
  • Danoux, C. B. S. S., Bassett, D. C., Othman, Z., Rodrigues, A. I., Reis, R. L., Barralet, J. E., … Habibovic, P. (2015). Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 17, 1–15. doi:10.1016/j.actbio.2015.02.003
  • Danoux, C., Pereira, D., Döbelin, N., Stähli, C., Barralet, J., van Blitterswijk, C., & Habibovic, P. (2016). The effects of crystal phase and particle morphology of calcium phosphates on proliferation and differentiation of human mesenchymal stromal cells. Advanced Healthcare Materials, 5(14), 1775–1785. doi:10.1002/adhm.201600184
  • Danoux, C., Sun, L., Koçer, G., Birgani, Z. T., Barata, D., Barralet, J., … Habibovic, P. (2016). Development of highly functional biomaterials by decoupling and recombining material properties. Advanced Materials (Deerfield Beach, Fla.), 28(9), 1803–1808. doi:10.1002/adma.201504589
  • Dasgupta, S., Tarafder, S., Bandyopadhyay, A., & Bose, S. (2013). Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Materials Science & Engineering. C, Materials for Biological Applications, 33(5), 2846–2854. doi:10.1016/j.msec.2013.03.004
  • Davison, N. L., Luo, X., Schoenmaker, T., Everts, V., Yuan, H., Barrère-de Groot, F., & de Bruijn, J. D. (2014). Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo. European Cells & Materials, 27, 281–297; discussion 296–297. doi:10.22203/ecm.v027a20
  • Davison, N., Yuan, H., de Bruijn, J. D., & Barrere-de Groot, F. (2012). In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers. Acta Biomaterialia, 8(7), 2759–2769. doi:10.1016/j.actbio.2012.04.007
  • Deligianni, D. D., Katsala, N. D., Koutsoukos, P. G., & Missirlis, Y. F. (2000). Efect of surface roughness of hydroxyapatite on human bone marrowcell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 22(1), 87–96. doi:10.1016/S0142-9612(00)00174-5
  • Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48(Pt 5), 1573–1580. doi:10.1107/S1600576715014685
  • dos Santos, E. A., Farina, M., Soares, G. A., & Anselme, K. (2009). Chemical and topographical influence of hydroxyapatite and beta-tricalcium phosphate surfaces on human osteoblastic cell behavior. Journal of Biomedical Materials Research. Part A, 89(2), 510–520. doi:10.1002/jbm.a.31991
  • Duan, R., Barbieri, D., Luo, X., Weng, J., Bao, C., de Bruijn, J. D., & Yuan, H. (2017). Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomaterials Science, 6(1), 136–145. doi:10.1039/c7bm00717e
  • Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., & Ginebra, M.-P. (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds. Tissue Engineering. Part A, 14(8), 1341–1351. doi:10.1089/ten.tea.2007.0287
  • Eyckmans, J., Roberts, S. J., Bolander, J., Schrooten, J., Chen, C. S., & Luyten, F. P. (2013). Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials, 34(19), 4612–4621. doi:10.1016/j.biomaterials.2013.03.011
  • Faia-Torres, A. B., Guimond-Lischer, S., Rottmar, M., Charnley, M., Goren, T., Maniura-Weber, K., … Neves, N. M. (2014). Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 35(33), 9023–9032. doi:10.1016/j.biomaterials.2014.07.015
  • Fang, Y., Zekiy, A. O., Ghaedrahmati, F., Timoshin, A., Farzaneh, M., Anbiyaiee, A., & Khoshnam, S. E. (2021). Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Communication and Signaling: CCS, 19(1), 41. doi:10.1186/s12964-021-00725-y
  • Farzadi, A., Bakhshi, F., Solati-Hashjin, M., Asadi-Eydivand, M., & Osman, NAa. (2014). Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceramics International, 40(4), 6021–6029. doi:10.1016/j.ceramint.2013.11.051
  • Franceschi, R. T., & Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. Journal of Cellular Biochemistry, 88(3), 446–454. doi:10.1002/jcb.10369
  • Galvan-Chacon, V. P., & Habibovic, P. (2017). Deconvoluting the bioactivity of calcium phosphate-based bone graft substitutes: Strategies to understand the role of individual material properties. Advanced Healthcare Materials, 6(13), 1478.
  • Gibson, I. R., & Bonfield, W. (2002). Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. Journal of Materials Science. Materials in Medicine, 13(7), 685–693.
  • Gillman, C. E., & Jayasuriya, A. C. (2021). FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 130, 112466. doi:10.1016/j.msec.2021.112466
  • Govoni, M., Vivarelli, L., Mazzotta, A., Stagni, C., Maso, A., & Dallari, D. (2021). Commercial bone grafts claimed as an alternative to autografts: Current trends for clinical applications in orthopaedics. Materials (Basel), 14(12), 3290. doi:10.3390/ma14123290
  • Green, J., Nusse, R., & van Amerongen, R. (2014). The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harbor Perspectives in Biology, 6(2), a009175.
  • Groen, N., Yuan, H., Hebels, D. G., Kocer, G., Mbuyi, F., & LaPointe, V. (2017). Linking the transcriptional landscape of bone induction to biomaterial design parameters. Advanced Materials, 29(10), 3259.
  • Guadarrama Bello, D., Fouillen, A., Badia, A., & Nanci, A. (2017). A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells. Acta Biomaterialia, 60, 339–349. doi:10.1016/j.actbio.2017.07.022
  • Habibovic, P., & Barralet, J. E. (2011). Bioinorganics and biomaterials: Bone repair. Acta Biomaterialia, 7(8), 3013–3026. doi:10.1016/j.actbio.2011.03.027
  • Habibovic, P., Yuan, H., van den Doel, M., Sees, T. M., van Blitterswijk, C. A., & de Groot, K. (2006). Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. Journal of Orthopaedic Research, 24(5), 867–876. doi:10.1002/jor.20115
  • Hahn, M., Vogel, M., Pompesius-Kempa, M., & Delling, G. (1992). Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture. Bone, 13(4), 327–330. doi:10.1016/8756-3282(92)90078-b
  • He, D., Liu, F., Cui, S., Jiang, N., Yu, H., Zhou, Y., … Kou, X. (2020). Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Research & Therapy, 11(1), 112. doi:10.1186/s13287-020-01607-9
  • Hoai, T. T., & Nga, N. K. (2018). Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds. Journal of the Iranian Chemical Society, 15(7), 1663–1671. doi:10.1007/s13738-018-1365-4
  • Hornez, J. C., Chai, F., Monchau, F., Blanchemain, N., Descamps, M., & Hildebrand, H. F. (2007). Biological and physico-chemical assessment of hydroxyapatite (HA) with different porosity. Biomolecular Engineering, 24(5), 505–509. doi:10.1016/j.bioeng.2007.08.015
  • Kannan, S., Ventura, J. M., & Ferreira, J. M. F. (2007). Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study. Ceramics International, 33(4), 637–641. doi:10.1016/j.ceramint.2005.11.014
  • Kano, S., Miyajima, N., Fukuda, S., & Hatakeyama, S. (2008). Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Research, 68(14), 5572–5580. doi:10.1158/0008-5472.CAN-07-6231
  • Kean, M. J., Williams, K. C., Skalski, M., Myers, D., Burtnik, A., Foster, D., & Coppolino, M. G. (2009). VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion. Journal of Cell Science, 122(Pt 22), 4089–4098. doi:10.1242/jcs.052761
  • Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Sandri, M., & Sprio, S. (2008). Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour. Journal of Materials Science. Materials in Medicine, 19(1), 239–247. doi:10.1007/s10856-006-0032-y
  • Lapczyna, H., Galea, L., Wüst, S., Bohner, M., Jerban, S., Sweedy, A., … von Rechenberg, B. (2014). Effect of grain size and microporosity on the in vivo behaviour of beta-tricalcium phosphate scaffolds. European Cells and Materials, 28, 299–319. doi:10.22203/eCM.v028a21
  • Le, B. Q., Vasilevich, A., Vermeulen, S., Hulshof, F., Stamatialis, D. F., van Blitterswijk, C. A., & de Boer, J. (2017). Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Engineering. Part A, 23(9–10), 458–469. doi:10.1089/ten.TEA.2016.0421
  • Lee, W. H., Zavgorodniy, A. V., Loo, C. Y., & Rohanizadeh, R. (2012). Synthesis and characterization of hydroxyapatite with different crystallinity: Effects on protein adsorption and release. Journal of Biomedical Materials Research. Part A, 100(6), 1539–1549. doi:10.1002/jbm.a.34093
  • Li, S., De Wijn, J. R., Li, J., Layrolle, P., & De Groot, K. (2003). Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Engineering, 9(3), 535–548. doi:10.1089/107632703322066714
  • Li, Y.-F., Gregersen, H., Nygaard, J. V., Cheng, W., Yu, Y., Huang, Y., … Chen, M. (2015). Ultraporous nanofeatured PCL-PEO microfibrous scaffolds enhance cell infiltration, colonization and myofibroblastic differentiation. Nanoscale, 7(36), 14989–14995. doi:10.1039/c5nr04244e
  • Liang, T., Gao, W., Zhu, L., Ren, J., Yao, H., & Wang, K. (2019). TIMP-1 inhibits proliferation and osteogenic differentiation of hBMSCs through Wnt/beta-catenin signaling. Bioscience Reports, 39(1), BSR20181290.
  • Lien, S. M., Ko, L. Y., & Huang, T. J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 5(2), 670–679. doi:10.1016/j.actbio.2008.09.020
  • Lincks, J., Boyan, B. D., Blanchard, C. R., Lohmann, C. H., Liu, Y., & Cochran, D. L. (1998). Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials, 19(23), 2219–2232. doi:10.1016/S0142-9612(98)00144-6
  • Linez-Bataillon, P., Monchau, F., Bigerelle, M., & Hildebrand, H. F. (2002). In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates. Biomolecular Engineering, 19(2–6), 133–141. doi:10.1016/S1389-0344(02)00024-2
  • Luftman, K., Hasan, N., Day, P., Hardee, D., & Hu, C. (2009). Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochemical and Biophysical Research Communications, 380(1), 65–70. doi:10.1016/j.bbrc.2009.01.036
  • Maazouz, Y., Chizzola, G., Dobelin, N., & Bohner, M. (2021). Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 275, 120912. doi:10.1016/j.biomaterials.2021.120912
  • Maazouz, Y., Rentsch, I., Lu, B., Santoni, B. L. G., Doebelin, N., & Bohner, M. (2020). In vitro measurement of the chemical changes occurring within beta-tricalcium phosphate bone graft substitutes. Acta Biomaterialia, 102, 440–457. doi:10.1016/j.actbio.2019.11.035
  • Mailer, R. K., Allende, M., Heestermans, M., Schweizer, M., Deppermann, C., Frye, M., … Renné, T. (2021). Xenotropic and polytropic retrovirus receptor 1 regulates procoagulant platelet polyphosphate. Blood, 137(10), 1392–1405. doi:10.1182/blood.2019004617
  • Mandal, B. B., & Kundu, S. C. (2009). Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 30(15), 2956–2965. doi:10.1016/j.biomaterials.2009.02.006
  • Mazón, P., García-Bernal, D., Meseguer-Olmo, L., Cragnolini, F., & De Aza, P. N. (2015). Human mesenchymal stem cell viability, proliferation and differentiation potential in response to ceramic chemistry and surface roughness. Ceramics International, 41(5), 6631–6644. doi:10.1016/j.ceramint.2015.01.110
  • Mehrjoo, M., Javadpour, J., Shokrgozar, M. A., Farokhi, M., Javadian, S., & Bonakdar, S. (2015). Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. Materials Express, 5(1), 41–48. doi:10.1166/mex.2015.1205
  • Mizuno, N., Iwata, T., Ohsawa, R., Ouhara, K., Matsuda, S., Kajiya, M., … Kurihara, H. (2020). Optineurin regulates osteoblastogenesis through STAT1. Biochemical and Biophysical Research Communications, 525(4), 889–894. doi:10.1016/j.bbrc.2020.03.028
  • Murakami, K., Yasunaga, T., Noguchi, T. Q. P., Gomibuchi, Y., Ngo, K. X., Uyeda, T. Q. P., & Wakabayashi, T. (2010). Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell, 143(2), 275–287. doi:10.1016/j.cell.2010.09.034
  • Nabiyouni, M., Ren, Y., & Bhaduri, S. B. (2015). Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites. Materials Science & Engineering. C, Materials for Biological Applications, 52, 11–17. doi:10.1016/j.msec.2015.03.032
  • Nehlig, A., Molina, A., Rodrigues-Ferreira, S., Honore, S., & Nahmias, C. (2017). Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cellular and Molecular Life Sciences: CMLS, 74(13), 2381–2393. doi:10.1007/s00018-017-2476-2
  • Othman, Z., Fernandes, H., Groot, A. J., Luider, T. M., Alcinesio, A., Pereira, D. d M., … Habibovic, P. (2019). The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials, 210, 12–24. doi:10.1016/j.biomaterials.2019.04.021
  • Otsuka, M., Oshinbe, A., LeGeros, R. Z., Tokudome, Y., Ito, A., Otsuka, K., & Higuchi, W. I. (2008). Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. Journal of Pharmaceutical Sciences, 97(1), 421–432. doi:10.1002/jps.21131
  • Pamula, E., Filova, E., Bacakova, L., Lisa, V., & Adamczyk, D. (2009). Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. Journal of Biomedical Materials Research. Part A, 89(2), 432–443. doi:10.1002/jbm.a.31977
  • Perkins, R. S., Suthon, S., Miranda-Carboni, G. A., & Krum, S. A. (2021). WNT5B in cellular signaling pathways. Seminars in Cell & Developmental Biology, 125, 11–16.
  • Place, D. E., Malireddi, R. K. S., Kim, J., Vogel, P., Yamamoto, M., & Kanneganti, T. D. (2021). Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nature Communications, 12(1), 496. doi:10.1038/s41467-020-20807-8
  • Prihadi, J. C., Sugandi, S., Siregar, N. C., Soejono, G., & Harahap, A. (2018). Imbalance in extracellular matrix degradation in urethral stricture. Research and Reports in Urology, 10, 227–232. doi:10.2147/RRU.S178904
  • Ribeiro, C. M., Reece, J., & Putney, J. W. Jr.(1997). Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. The Journal of Biological Chemistry, 272(42), 26555–26561. doi:10.1074/jbc.272.42.26555
  • Riggs, K. A., Hasan, N., Humphrey, D., Raleigh, C., Nevitt, C., Corbin, D., & Hu, C. (2012). Regulation of integrin endocytic recycling and chemotactic cell migration by syntaxin 6 and VAMP3 interaction. Journal of Cell Science, 125(Pt 16), 3827–3839.
  • Rosado, J. A., & Sage, S. O. (2000). The actin cytoskeleton in store­mediated calcium entry. The Journal of Physiology, 526(2), 221–229. doi:10.1111/j.1469-7793.2000.t01-2-00221.x
  • Semnani, D. (2017). Geometrical characterization of electrospun nanofibers. In Electrospun nanofibers (pp. 151–180). Sawston, UK: Woodhead Publishing.
  • Sheikh, Z., Abdallah, M.-N., Hanafi, A., Misbahuddin, S., Rashid, H., & Glogauer, M. (2015). Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials. Materials (Basel, Switzerland), 8(11), 7913–7925. doi:10.3390/ma8115430
  • Stiburek, L., Cesnekova, J., Kostkova, O., Fornuskova, D., Vinsova, K., Wenchich, L., … Zeman, J. (2012). YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Molecular Biology of the Cell, 23(6), 1010–1023. doi:10.1091/mbc.E11-08-0674
  • Sun, L., Danoux, C. B., Wang, Q., Pereira, D., Barata, D., Zhang, J., … Habibovic, P. (2016). Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs. Acta Biomaterialia, 42, 364–377. doi:10.1016/j.actbio.2016.06.018
  • Tahmasebi Birgani, Z., Fennema, E., Gijbels, M. J., de Boer, J., van Blitterswijk, C. A., & Habibovic, P. (2016). Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 36, 267–276. doi:10.1016/j.actbio.2016.03.031
  • Tamimi, F., Le Nihouannen, D., Eimar, H., Sheikh, Z., Komarova, S., & Barralet, J. (2012). The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomaterialia, 8(8), 3161–3169. doi:10.1016/j.actbio.2012.04.025
  • Tran, H., Hamada, F., Schwarz-Romond, T., & Bienz, M. (2008). Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes & Development, 22(4), 528–542. doi:10.1101/gad.463208
  • Vasilevich, A. S., Vermeulen, S., Kamphuis, M., Roumans, N., Eroumé, S., Hebels, D. G. A. J., … de Boer, J. (2020). On the correlation between material-induced cell shape and phenotypical response of human mesenchymal stem cells. Scientific Reports, 10(1), 18988. doi:10.1038/s41598-020-76019-z
  • Veljović, D., Colić, M., Kojić, V., Bogdanović, G., Kojić, Z., Banjac, A., … Janaćković, D. (2012). The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics. Journal of Biomedical Materials Research. Part A, 100(11), 3059–3070. doi:10.1002/jbm.a.34225
  • Vermeulen, S., Roumans, N., Honig, F., Carlier, A., Hebels, D. G. A. J., Eren, A. D., … de Boer, J. (2020). Mechanotransduction is a context-dependent activator of TGF-beta signaling in mesenchymal stem cells. Biomaterials, 259, 120331. doi:10.1016/j.biomaterials.2020.120331
  • Vermeulen, S., Tahmasebi Birgani, Z., & Habibovic, P. (2022). Biomaterial-induced pathway modulation for bone regeneration. Biomaterials, 283, 121431. doi:10.1016/j.biomaterials.2022.121431
  • Wang, J., Wang, M., Chen, F., Wei, Y., Chen, X., Zhou, Y., … Zhang, X. (2019). Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway. International Journal of Nanomedicine, 14, 7987–8000. doi:10.2147/IJN.S216182
  • Wang, L., Barbieri, D., Zhou, H., de Bruijn, J. D., Bao, C., & Yuan, H. (2015). Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. Journal of Biomedical Materials Research. Part A, 103(6), 1919–1929. doi:10.1002/jbm.a.35325
  • Wang, Y., Pan, J., Zhang, Y., Li, X., Zhang, Z., Wang, P., … Li, J. (2019). Wnt and Notch signaling pathways in calcium phosphate-enhanced osteogenic differentiation: A pilot study. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 107(1), 149–160. doi:10.1002/jbm.b.34105
  • Webb, H. K., Truong, V. K., Hasan, J., Fluke, C., Crawford, R. J., & Ivanova, E. P. (2012). Roughness parameters for standard description of surface nanoarchitecture. Scanning, 34(4), 257–263. doi:10.1002/sca.21002
  • Wilkinson, A., Hewitt, R. N., McNamara, L. E., McCloy, D., Dominic Meek, R. M., & Dalby, M. J. (2011). Biomimetic microtopography to enhance osteogenesis in vitro. Acta Biomaterialia, 7(7), 2919–2925. doi:10.1016/j.actbio.2011.03.026
  • Xiao, Y., Guo, Q., Jiang, T.-J., Yuan, Y., Yang, L., Wang, G.-W., & Xiao, W.-F. (2019). miR4833p regulates osteogenic differentiation of bone marrow mesenchymal stem cells by targeting STAT1. Molecular Medicine Reports, 20(5), 4558–4566.
  • Xu, L., Corcoran, R. B., Welsh, J. W., Pennica, D., & Levine, A. J. (2000). WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes & Development, 14(5), 585–595. doi:10.1101/gad.14.5.585
  • Yuan, H., Fernandes, H., Habibovic, P., de Boer, J., Barradas, A. M. C., de Ruiter, A., … de Bruijn, J. D. (2010). Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13614–13619. doi:10.1073/pnas.1003600107
  • Yuan, H., van Blitterswijk, C. A., de Groot, K., & de Bruijn, J. D. (2006). A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. Journal of Biomedical Materials Research Part A, 78A(1), 139–147. doi:10.1002/jbm.a.30707
  • Yuan, H., Yang, Z., De Bruij, J. D., De Groot, K., & Zhang, X. (2001). Material-dependent bone induction by calcium phosphate ceramics: A 2.5 years study in dogs. Biomaterials, 22(19), 2617–2623. doi:10.1016/S0142-9612(00)00450-6