1,102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On the effect of building platform material on laser-powder bed fusion of a Ni-base superalloy HAYNES® 282®

, , ORCID Icon & ORCID Icon
Article: 2132016 | Received 02 Feb 2022, Accepted 03 Sep 2022, Published online: 17 Oct 2022

References

  • Abinash, K. S., Siddhartha, R., & Mandal, N. K. (2011). Study on Kerf width in wire-EDM based on Taguchi method. Applied Mechanics and Materials, 110–116, 1808–1816. doi:10.4028/www.scientific.net/AMM.110-116.1808
  • Ahonen, M., Mouginot, R., Sarikka, T., Lindqvist, S., Que, Z., Ehrnstén, U., … Hänninen, H. (2020). Effect of thermal ageing at 400 °C on the microstructure of ferrite-austenite interface of nickel-base alloy narrow-gap dissimilar metal weld. Metals, 10(3), 421. doi:10.3390/met10030421
  • American Society of Materials. (1989). Machining—ASM handbook (Vol. 16). Material Park, OH: ASM International
  • Boswell, J., Jones, J., Barnard, N., Clark, D., Whittaker, M., & Lancaster, R. (2021). The effects of energy density and heat treatment on the microstructure and mechanical properties of laser additive manufactured Haynes 282. Materials & Design, 205, 109725. doi:10.1016/j.matdes.2021.109725
  • da Silva Lima, C. V., Verdier, M., Robaut, F., Ghanbaja, J., Badinier, G., Marlaud, T., … Van Landeghem, H. P. (2021). Evolution of a low-alloy steel/nickel superalloy dissimilar metal weld during post-weld heat treatment. Welding in the World, 65(10), 1871–1885. doi:10.1007/s40194-021-01146-8
  • DIN EN ISO. (2018). DIN EN ISO 683-1:2018-09, Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle_- Teil_1: Unlegierte Vergütungsstähle (ISO_683-1:2016); Deutsche Fassung EN_ISO_683-1:2018: Heat ­treatable steels, alloy steels and free­cutting steels - Part 1: Non­alloy steels for quenching and tempering. Berlin: Beuth Verlag GmbH.
  • DuPont, J. N., Kiser, S. D., & Lippold, J. C. (2009). Welding metallurgy and weldability of nickel-base alloys. Hoboken, New Jersey: Wiley.
  • Geddes, B., Leon, H., & Huang, X. (2010). Superalloys: Alloying and performance. Materials Park, OH: ASM International
  • Ghiaasiaan, R., Ahmad, N., Gradl, P. R., Shao, S., & Shamsaei, N. (2022). Additively manufactured Haynes 282: Effect of unimodal vs. bimodal γ’- ­microstructure on mechanical properties. Materials Science and Engineering: A, 831, 142234. doi:10.1016/j.msea.2021.142234
  • Gola, K., Dubiel, B., & Kalemba-Rec, I. (2020). Microstructural changes in inconel 625 alloy fabricated by laser-based powder bed fusion process and subjected to high-temperature annealing. Journal of Materials Engineering and Performance, 29(3), 1528–1534. doi:10.1007/s11665-020-04605-3
  • Guo, X., He, P., Xu, K., Lv, X. C., Zhang, J. B., & Gu, Y. (2022). Microstructure investigation on the fusion zone of steel/nickel-alloy dissimilar weld joint for nozzle buttering in nuclear power industry. Welding in the World, 66(2), 187–194. doi:10.1007/s40194-021-01199-9
  • Haynes International Inc. (• • • •). HAYNES® 282®Alloy [Internet] (2022). Retrieved 2022, from https://haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HAYNES282alloy.aspx.
  • Hocine, S., Van Swygenhoven, H., Van Petegem, S., Chang, C. S. T., Maimaitiyili, T., Tinti, G., … Casati, N. (2020). Operando X-ray diffraction during laser 3D printing. Materials Today, 34, 30–40. doi:10.1016/j.mattod.2019.10.001
  • López, B., Gutiérrez, I., & Urcola, J. J. (1996). Microstructural analysis of steel–nickel alloy clad interfaces. Materials Science and Technology, 12(1), 45–55. doi:10.1179/mst.1996.12.1.45
  • Osgerby, S., & Gibbons, T. B. (1992). The effect of trace elements on the creep behaviour of an Ni-Cr-base alloy. Materials Science and Engineering: A, 157(1), 63–71. doi:10.1016/0921-5093(92)90099-M
  • SAE International. (2010–12). AMS5951A for Haynes 282: Nickel alloy, corrosion and heat-resistant, sheet, strip, and plate 57Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al-0.005B vacuum induction and consumable electrode melted, solution heat treated precipitation heat treatable. Amsterdam, Netherlands: SAE International.
  • Shaikh, A. S., Schulz, F., Minet-Lallemand, K., & Hryha, E. (2021). Microstructure and mechanical properties of Haynes 282 superalloy produced by laser ­powder bed fusion. Materials Today Communications, 26, 102038. doi:10.1016/j.mtcomm.2021.102038
  • Sims, C. T., Stoloff, N. S., & Hagel, W. C. (1987). Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. New York: Wiley.
  • Yang, Y. K., Kou, S. & Yang, (2007). Fusion-boundary macrosegregation in dissimilar filler metal Al Cu welds. Welding Journal, 86, 331s–339s. Available from: http://files.aws.org/wj/supplement/WJ_2007_11_s331.pdf.