931
Views
0
CrossRef citations to date
0
Altmetric
SI-EUROMAT 2023

Buildability analysis on squared profile structure in 3D concrete printing (3DCP)

, , , , , & show all
Article: 2276443 | Received 13 Jul 2023, Accepted 23 Oct 2023, Published online: 06 Dec 2023

References

  • Adeleke, B. O., Kinuthia, J. M., Oti, J., & Ebailila, M. (2023). Physico-mechanical evaluation of geopolymer concrete activated by sodium hydroxide and silica fume-synthesised sodium silicate solution. Materials, 16(6), 1. doi:10.3390/ma16062400
  • Al Rashid, A., & Koç, M. (2021). Fused filament fabrication process: A review of numerical simulation techniques. Polymers, 13(20), 1–20. doi:10.3390/polym13203534
  • Al Rashid, A., & Koç, M. (2022). Experimental validation of numerical model for thermomechanical performance of material extrusion additive manufacturing process: Effect of process parameters. Polymers, 14(17), 3482. doi:10.3390/polym14173482
  • Al Rashid, A., & Koç, M. (2023a). Additive manufacturing for sustainability and circular economy: Needs, challenges, and opportunities for 3D printing of recycled polymeric waste. Materials Today Sustainability, 24, 100529. doi:10.1016/j.mtsust.2023.100529
  • Al Rashid, A., & Koç, M. (2023b). Experimental validation of numerical model for thermomechanical performance of material extrusion additive manufacturing process: Effect of infill design & density. Results in Engineering, 17, 100860. doi:10.1016/j.rineng.2022.100860
  • Al Rashid, A., & Koç, M. (2023c). Numerical predictions and experimental validation on the effect of material properties in filament material extrusion. Journal of Manufacturing Processes, 94, 403–412. doi:10.1016/j.jmapro.2023.03.027
  • Al Rashid, A., Ahmed, W., Khalid, M. Y., & Koç, M. (2021). Vat photopolymerization of polymers and polymer composites: Processes and applications. Additive Manufacturing., 47, 102279. doi:10.1016/j.addma.2021.102279
  • Al Rashid, A., Ikram, H., & Koç, M. (2023). Effect of carbon fiber reinforcement on dimensional variations of 3D printed polyamide-6 composites: A simulation study. Turkish Journal of Chemistry, 47(1), 33–39. doi:10.55730/1300-0527.3513
  • Alhumayani, H., Gomaa, M., Soebarto, V., & Jabi, W. (2020). Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete. Journal of Cleaner Production, 270, 122463. doi:10.1016/j.jclepro.2020.122463
  • Al-Noaimat, Y. A., Ghaffar, S. H., Chougan, M., & Al-Kheetan, M. J. (2023). A review of 3D printing low-carbon concrete with one-part geopolymer: Engineering, environmental and economic feasibility. Case Studies in Construction Materials, 18, e01818. doi:10.1016/j.cscm.2022.e01818
  • Alsalman, A., Assi, L. N., Kareem, R. S., Carter, K., & Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and ordinary Portland cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3, 100047. Dec. doi:10.1016/j.cesys.2021.100047
  • Bong, S. H., Nematollahi, B., Xia, M., Ghaffar, S. H., Pan, J., & Dai, J. G. (2022). Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Construction and Building Materials., 331, 127282. doi:10.1016/j.conbuildmat.2022.127282
  • Bong, S. H., Xia, M., Nematollahi, B., & Shi, C. (2021). Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications. Cement and Concrete Composites., 121, 104060. doi:10.1016/j.cemconcomp.2021.104060
  • Chougan, M., Ghaffar, S. H., Sikora, P., Chung, S.-Y., Rucinska, T., Stephan, D., … Swash, M. R. (2021). Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3D printable alkali-activated materials. Materials and Design., 202, 109574. doi:10.1016/j.matdes.2021.109574
  • Chougan, M., Hamidreza Ghaffar, S., Jahanzat, M., Albar, A., Mujaddedi, N., & Swash, R. (2020). The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Construction and Building Materials., 250, 118928. doi:10.1016/j.conbuildmat.2020.118928
  • Comminal, R., da Silva, W. R. L., Andersen, T. J., Stang, H., & Spangenberg, J. (2020). Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling. In F. Bos, S. Lucas, R. Wolfs, & T. Salet, T. (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Book Series (Vol. 28, pp. 852–862). Cham: Springer. doi:10.1007/978-3-030-49916-7_83
  • Dal Poggetto, G., Fortunato, M., Cardinale, A. M., & Leonelli, C. (2023). Thermal, chemical and mechanical characterization of recycled corundum powder in metakaolin-based geopolymer binder. Applied Clay Science., 237, 106875. doi:10.1016/j.clay.2023.106875
  • de Matos, P. R., Foiato, M., & Prudêncio, L. R. (2019). Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Construction and Building Materials., 203, 282–293. doi:10.1016/j.conbuildmat.2019.01.074
  • Demiral, N. C., Ozkan Ekinci, M., Sahin, O., Ilcan, H., Kul, A., Yildirim, G., & Sahmaran, M. (2022). Mechanical anisotropy evaluation and bonding properties of 3D-printable construction and demolition waste-based geopolymer mortars. Cement and Concrete Composites., 134, 104814. doi:10.1016/j.cemconcomp.2022.104814
  • Deschamps, J., Simon, B., Tagnit-Hamou, A., & Amor, B. (2018). Is open-loop recycling the lowest preference in a circular economy? Answering through LCA of glass powder in concrete. Journal of Cleaner Production, 185, 14–22. doi:10.1016/j.jclepro.2018.03.021
  • El Fadili, H., Ben Ali, M., el Safhi, A. M., El Mahi, M., Aziz, A., & Lotfi, E. M. (2023). Effects of encapsulating cellulose acetate microfibers on the mechanical, thermal and environmental properties of geopolymers: A new solution to mitigate the cigarettes pollution. Journal of Building Engineering, 72, 106627. doi:10.1016/j.jobe.2023.106627
  • Ikram, H., Al Rashid, A., & Koç, M. (2022). Additive manufacturing of smart polymeric composites: Literature review and future perspectives. Polymer Composites., 43(9), 6355–6380. doi:10.1002/pc.26948
  • Ilcan, H., Sahin, O., Kul, A., Yildirim, G., & Sahmaran, M. (2022). Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-printing. Construction and Building Materials., 328, 127114. doi:10.1016/j.conbuildmat.2022.127114
  • Imran, R., Al Rashid, A., & Koç, M. (2022). Review on computational modeling for the property, process, product and performance (PPPP) characteristics of additively manufactured porous magnesium implants. Bioprinting, 28, e00236. doi:10.1016/j.bprint.2022.e00236
  • Jayathilakage, R., Sanjayan, J., & Rajeev, P. (2020). Characterizing extrudability for 3D concrete printing using discrete element simulations. In F. Bos, S. Lucas, R. Wolfs, & T. Salet, T. (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Book Series (Vol. 28, pp. 290–300). Cham: Springer. doi:10.1007/978-3-030-49916-7_30
  • Khan, S. A., & Koç, M. (2022). Numerical modelling and simulation for extrusion-based 3D concrete printing: The underlying physics, potential, and challenges. Results in Materials, 16, 100337. Dec. doi:10.1016/j.rinma.2022.100337
  • Khan, S. A., & Koç, M. (2023). Buildability analysis of 3D concrete printing process: A parametric study using design of experiment approach. Processes, 11(3), 782. doi:10.3390/pr11030782
  • Khan, S. A., İlcan, H., Aminipour, E., Şahin, O., Al Rashid, A., Şahmaran, M., & Koç, M. (2023). Buildability analysis on effect of structural design in 3D concrete printing (3DCP): An experimental and numerical study. Case Studies in Construction Materials, 19, e02295. doi:10.1016/j.cscm.2023.e02295
  • Khan, S. A., Mir, N., Kul, A., Şahin, O., Şahmaran, M., & Koç, M. (2022). Renewable energy for carbon footprint reduction of green geopolymers material’s production for built-environment. Energy Reports, 8, 852–858. doi:10.1016/j.egyr.2022.08.104
  • Labaran, Y. H., Mathur, V. S., Muhammad, S. U., & Musa, A. A. (2022). Carbon footprint management: A review of construction industry. Cleaner Engineering and Technology, 9, 100531. Aug. doi:10.1016/j.clet.2022.100531
  • Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 45(8), 1221–1232. doi:10.1617/s11527-012-9828-z
  • Lim, J. H., Panda, B., & Pham, Q. C. (2018). Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Construction and Building Materials., 178, 32–41. doi:10.1016/j.conbuildmat.2018.05.010
  • Lv, X., Qin, Y., Liang, H., & Cui, X. (2021). Effects of modifying agent on rheology and workability of alkali-activated slag paste for 3D extrusion forming. Construction and Building Materials., 302, 124062. doi:10.1016/j.conbuildmat.2021.124062
  • Ma, S., Fu, S., Wang, Q., Xu, L., He, P., Sun, C., … Zhou, Y. (2022). 3D printing of damage‐tolerant martian regolith simulant‐based geopolymer composites. Additive Manufacturing., 58, 103025. doi:10.1016/j.addma.2022.103025
  • McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010
  • Mir, N., Khan, S. A., Kul, A., Sahin, O., Lachemi, M., Sahmaran, M., & Koç, M. (2022). Life cycle assessment of binary recycled ceramic tile and recycled brick waste-based geopolymers. Cleaner Materials, 5, 100116. doi:10.1016/j.clema.2022.100116
  • Mir, N., Khan, S. A., Kul, A., Sahin, O., Ozcelikci, E., Sahmaran, M., & Koc, M. (2023). Construction and demolition waste-based self-healing geopolymer composites for the built environment: An environmental profile assessment and optimization. Construction and Building Materials., 369, 130520. doi:10.1016/j.conbuildmat.2023.130520
  • Mir, N., Khan, S. A., Kul, A., Sahin, O., Sahmaran, M., & Koc, M. (2022). Life cycle assessment of construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cleaner Engineering and Technology, 10, 100553. doi:10.1016/j.clet.2022.100553
  • Muthukrishnan, S., Ramakrishnan, S., & Sanjayan, J. (2021). Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cement and Concrete Composites, 116, 103899. doi:10.1016/j.cemconcomp.2020.103899
  • Ordoñez, E., Neves Monteiro, S., & Colorado, H. A. (2022). Valorization of a hazardous waste with 3D-printing: Combination of kaolin clay and electric arc furnace dust from the steel making industry. Materials and Design., 217, 110617. doi:10.1016/j.matdes.2022.110617
  • Panda, B., & Tan, M. J. (2018). Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International., 44(9), 10258–10265. doi:10.1016/j.ceramint.2018.03.031
  • Panda, B., Ruan, S., Unluer, C., & Tan, M. J. (2020). Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Composites Part B: Engineering, 186, 107826. doi:10.1016/j.compositesb.2020.107826
  • Panda, B., Unluer, C., & Tan, M. J. (2018). Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cement and Concrete Composites., 94, 307–314. doi:10.1016/j.cemconcomp.2018.10.002
  • Panizza, M., Natali, M., Garbin, E., Ducman, V., & Tamburini, S. (2020). Optimization and mechanical-physical characterization of geopolymers with construction and demolition waste (CDW) aggregates for construction products. Construction and Building Materials., 264, 120158. doi:10.1016/j.conbuildmat.2020.120158
  • Panizza, M., Natali, M., Garbin, E., Tamburini, S., & Secco, M. (2018). Assessment of geopolymers with construction and demolition waste (CDW) aggregates as a building material. Construction and Building Materials., 181, 119–133. doi:10.1016/j.conbuildmat.2018.06.018
  • Perrot, A., Pierre, A., Nerella, V. N., Wolfs, R. J. M., Keita, E., Nair, S. A. O., … Mechtcherine, V. (2021). From analytical methods to numerical simulations: A process engineering toolbox for 3D concrete printing. Cement and Concrete Composites., 122, 104164. doi:10.1016/j.cemconcomp.2021.104164
  • Şahin, O., İlcan, H., Ateşli, A. T., Kul, A., Yıldırım, G., & Şahmaran, M. (2021). Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cement and Concrete Composites., 121, 104088. doi:10.1016/j.cemconcomp.2021.104088
  • Sai Sandeep, U., & Muralidhara Rao, T. (2017). A review on 3D printing of concrete – The future of sustainable construction. i-Manager’s Journal on Civil Engineering, 7(3), 49. doi:10.26634/jce.7.3.13610
  • Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. The Science of the Total Environment, 836, 155577. doi:10.1016/J.SCITOTENV.2022.155577
  • Shen, J., Li, Y., Lin, H., & Li, Y. (2023). Development of autogenous shrinkage prediction model of alkali-activated slag-fly ash geopolymer based on machine learning. Journal of Building Engineering, 71, 106538. doi:10.1016/j.jobe.2023.106538
  • Srinivasa, A. S., Swaminathan, K., & Yaragal, S. C. (2023). Microstructural and optimization studies on novel one-part geopolymer pastes by Box-Behnken ­response surface design method. Case Studies in Construction Materials, 18, e01946. doi:10.1016/j.cscm.2023.e01946
  • Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. (2017). 3D printing trends in building and construction industry: A ­review. Virtual and Physical Prototyping, 12(3), 261–276. doi:10.1080/17452759.2017.1326724
  • Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358. doi:10.1016/j.jclepro.2020.124358
  • Vantyghem, G., Ooms, T., De Corte, W. (2020). FEM modelling techniques for simulation of 3D concrete printing. In Proceedings of the Fib Symposium 2020: Concrete Structures for Resilient Society, Shanghai, China, November 22–24 (pp. 964–972).
  • Vázquez-Rodríguez, F., Elizondo, N., Montes-González, M., Gómez-Rodríguez, C., González-Carranza, Y., Guzmán, A. M., & Rodríguez, E. A. (2023). Microstructural and mechanical characteristics of alkali-activated binders composed of milled fly ash and granulated blast furnace slag with µ-limestone ­addition. Materials, 16(10), 3818. doi:10.3390/ma16103818
  • Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research., 106, 103–116. doi:10.1016/j.cemconres.2018.02.001
  • Zhao, Z., Chen, M., Xu, J., Li, L., Huang, Y., Yang, L., … Lu, L. (2021). Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system. Construction and Building Materials., 284, 122797. doi:10.1016/j.conbuildmat.2021.122797