374
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling the concurrent growth of inter- and intragranular Si precipitates during slow cooling of the alloy AA6016

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon
Article: 2316914 | Received 13 Jul 2023, Accepted 05 Feb 2024, Published online: 22 Feb 2024

References

  • Aaron, H. B., & I. Aaronson, H. (1968). Growth of grain boundary precipitates in Al-4% Cu by interfacial diffusion. Acta Metallurgica, 16(6), 1–23. doi:10.1016/0001-6160(68)90097-7
  • Bale, C. W., Chartrand, P., Degterov, S. A., Eriksson, G., Hack, K., Mahfoud, R. B., & Petersen, S. (2002). FactSage thermochemical software and databases. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry, 26(2), 189–228. doi:10.1016/S0364-5916(02)00035-4
  • Bollmann, C., Kovacs, S., & Gottstein, G. (2010). Proceedings of the 12th ICAA, 119–124.
  • Buken, H., & Kozeschnik, E. (2020). Modeling static recrystallization in Al-Mg alloys. Metallurgical and Materials Transactions A, 52(2), 544–552. doi:10.1007/s11661-020-06100-9
  • Castany, P., Diologent, F., Rossoll, A., Despois, J.-F., Bezençon, C., & Mortensen, A. (2013). Influence of quench rate and microstructure on bendability of AA6016 aluminum alloys. Materials Science and Engineering: A, 559, 558–565. doi:10.1016/j.msea.2012.08.141
  • Chakrabarti, D. J., & Laughlin, D. E. (2004). Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Progress in Materials Science, 49(3-4), 389–410. doi:10.1016/S0079-6425(03)00031-8
  • Raabe, D., Ponge, D., Uggowitzer, P. J., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Deschamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S., Sinclair, C., Bourgeois, L., & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science, 128, 100947. doi:10.1016/j.pmatsci.2022.100947
  • Engler, O., & Hirsch, J. (2002). Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—A review. Materials Science and Engineering: A, 336(1-2), 249–262. doi:10.1016/S0921-5093(01)01968-2
  • Engler, O., Schröter, T., & Krause, C. (2023). Formation of intermetallic particles during solidification and homogenisation of two Al–Mg–Si alloys. Materials Science Technology, 39(1), 70–84. doi:10.1080/02670836.2022.2102279
  • Falkinger, G., Reisecker, C., & Mitsche, S. (2022). Analysis of the evolution of Mg 2 Si precipitates during continuous cooling and subsequent re-heating of a 6061 aluminum alloy with differential scanning calorimetry and a simple model. International Journal of Materials Research, 113(4), 316–326. doi:10.1515/ijmr-2021-8443
  • Fan, Z., Lei, X., Wang, L., Yang, X., & Sanders, R. E. (2018). Influence of quenching rate and aging on bendability of AA6016 sheet. Materials Science and Engineering: A, 730, 317–327. doi:10.1016/j.msea.2018.05.108
  • Fujikawa, S., Hirano, K., & Fukushima, Y. (1978). Diffusion of silicon in aluminum. Metallurgical Transactions A, 9(12), 1811–1815. doi:10.1007/BF02663412
  • Garrett, R. P., Lin, J., & Dean, T. A. (2005). An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. International Journal of Plasticity, 21(8), 1640–1657. doi:10.1016/j.ijplas.2004.11.002
  • Gupta, A. K., Lloyd, D. J., & Court, S. A. (2001). Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Materials Science and Engineering: A, 316(1-2), 11–17. doi:10.1016/S0921-5093(01)01247-3
  • Huang, Y., Robson, J. D., & Prangnell, P. B. (2010). The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Materialia, 58(5), 1643–1657. doi:10.1016/j.actamat.2009.11.008
  • Kamp, N., Sullivan, A., Tomasi, R., & Robson, J. D. (2006). Modelling of heterogeneous precipitate distribution evolution during friction stir welding process. Acta Materialia, 54(8), 2003–2014. doi:10.1016/j.actamat.2005.12.024
  • Kozeschnik, E., Svoboda, J., Radis, R., & Fischer, F. D. (2009). Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries. Modelling and Simulation in Materials Science and Engineering, 18(1), 015011. doi:10.1088/0965-0393/18/1/015011
  • Kuijpers, N. C. W., Vermolen, F. J., Vuik, C., Koenis, P. T. G., Nilsen, K. E., & van der Zwaag, S. (2005). The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Materials Science and Engineering: A, 394(1-2), 9–19. doi:10.1016/j.msea.2004.09.073
  • Lang, P., Povoden-Karadeniz, E., Falahati, A., & Kozeschnik, E. (2014). Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC. Journal of Alloys and Compounds, 612, 443–449. doi:10.1016/j.jallcom.2014.05.191
  • Liu, C., Garner, A., Zhao, H., Prangnell, P. B., Gault, B., Raabe, D., & Shanthraj, P. (2021). CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Materialia, 214, 116966. doi:10.1016/j.actamat.2021.116966
  • McLean, D. (1957). Grain boundaries in metals. Oxford University Press: New York.
  • Meyruey, G., Massardier, V., Lefebvre, W., & Perez, M. (2018). Over-ageing of an Al-Mg-Si alloy with silicon excess. Materials Science and Engineering: A, 730, 92–105. doi:10.1016/j.msea.2018.05.094
  • Milkereit, B., Wanderka, N., Schick, C., & Kessler, O. (2012). Continuous cooling precipitation diagrams of Al–Mg–Si alloys. Materials Science and Engineering: A, 550, 87–96. doi:10.1016/j.msea.2012.04.033
  • Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37–49. doi:10.1016/S0921-5093(99)00653-X
  • Mucsi, A. (2014). Effect of hot rolled grain size on the precipitation kinetics of nitridesin low carbon Al-killed steel. Journal of Materials Processing Technology, 214, 1536–1545. doi:10.1016/j.jmatprotec.2014.02.024
  • Myhr, O. R., Grong, O., & Andersen, S. J. (2001). Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Materialia, 49(1), 65–75. doi:10.1016/S1359-6454(00)00301-3
  • Oriani, R. A. (1970). The diffusion and trapping of hydrogen in steel. Acta Metallurgica, 18(1), 147–157. doi:10.1016/0001-6160(70)90078-7
  • Österreicher, J. A., Kumar, M., Schiffl, A., Schwarz, S., Hillebrand, D., & Bourret, G. R. (2016). Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study. Materials Characterization, 122, 63–69. doi:10.1016/j.matchar.2016.10.020
  • Paraskevas, D., Ingarao, G., Deng, Y., Duflou, J. R., Pontikes, Y., & Blanpain, B. (2019). Evaluating the material resource efficiency of secondary aluminium production: A Monte Carlo-based decision-support tool. Journal of Cleaner Production, 215, 488–496. doi:10.1016/j.jclepro.2019.01.097
  • Prillhofer, R., Rank, G., Berneder, J., Antrekowitsch, H., Uggowitzer, P. J., & Pogatscher, S. (2014). Property Criteria for Automotive Al-Mg-Si Sheet Alloys. Materials (Basel, Switzerland), 7(7), 5047–5068. doi:10.3390/ma7075047
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. doi:10.1038/nmeth.2089
  • Schumacher, P., Pogatscher, S., Starink, M. J., Schick, C., Mohles, V., & Milkereit, B. (2015). Quench-induced precipitates in Al–Si alloys: Calorimetric determination of solute content and characterisation of microstructure. Thermochimica Acta, 602, 63–73. doi:10.1016/j.tca.2014.12.023
  • Sherstnev, P., Melzer, C., & Sommitsch, C. (2012). Prediction of precipitation kinetics during homogenisation and microstructure evolution during and after hot rolling of AA5083. International Journal of Mechanical Sciences, 54(1), 12–19. doi:10.1016/j.ijmecsci.2011.09.001
  • Starink, M. J. (1996). Heating rate dependence of precipitation in an Al-1%Si alloy. Journal of Materials Science Letters, 15(20), 1749–1751. doi:10.1007/BF00275330
  • Svoboda, J., Zickler, G. A., Kozeschnik, E., & Fischer, F. D. (2015). Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries. Philosophical Magazine Letters, 95(9), 458–465. doi:10.1080/09500839.2015.1087652
  • Wang, H., Kohyama, M., Tanaka, S., & Shiihara, Y. (2015). First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: application of local-energy decomposition. Journal of Materials Science, 50(21), 6864–6881. doi:10.1007/s10853-015-9294-4
  • Wang, X., Guo, M., Moliar, O., Peng, W., Xie, C., Chen, J., & Wang, Y. (2022). Enhanced grain refinement and texture weakening in Al–Mg–Si alloy through a novel thermomechanical processing. Journal of Alloys and Compounds, 925, 166654. doi:10.1016/j.jallcom.2022.166654
  • Yi, G., Free, M. L., Zhu, Y., & Derrick, A. T. (2014). Capillarity Effect Controlled Precipitate Growth at the Grain Boundary of Long-Term Aging Al 5083 Alloy. Metallurgical and Materials Transactions A, 45(11), 4851–4862. doi:10.1007/s11661-014-2473-0
  • Zener, C. (1949). Theory of growth of spherical precipitates from solid solution. Journal of Applied Physics, 20(10), 950–953. doi:10.1063/1.1698258
  • Zhang, R., Steiner, M. A., Agnew, S. R., Kairy, S. K., Davies, C. H. J., & Birbilis, N. (2017). Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083. Scientific Reports, 7(1), 2961. doi:10.1038/s41598-017-03090-4
  • Zhang, W. X., Chen, Y. Z., Zhou, L., Zhao, T. T., Wang, W. Y., Liu, F., & Huang, X. X. (2023). Simultaneous increase of tensile strength and ductility of Al-Si solid solution alloys: The effect of solute Si on work hardening and dislocation behaviors. Materials Science and Engineering: A, 869, 144792. doi:10.1016/j.msea.2023.144792
  • Zhang, X., Guo, M., Zhang, J., & Zhuang, L. (2016). Dissolution of precipitates during solution treatment of Al-Mg-Si-Cu alloys. Metallurgical and Materials Transactions B, 47(1), 608–620. doi:10.1007/s11663-015-0500-1
  • Zhao, H., De Geuser, F., Kwiatkowski da Silva, A., Szczepaniak, A., Gault, B., Ponge, D., & Raabe, D. (2018). Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Materialia, 156, 318–329. doi:10.1016/j.actamat.2018.07.003