640
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recycle of printed circuit boards from waste electric and electronic equipment and their reusability as filler in 3D printed poly(lactic) acid composites

, , , &
Article: 2318374 | Received 30 Jan 2023, Accepted 08 Feb 2024, Published online: 28 Feb 2024

References

  • Balani, K., Verma, V., Agarwal, A., & Narayan, R. (2015). Physical, thermal, and mechanical properties of polymers. In K. Balani, V. Verma, A. Agarwal & R. Narayan (Eds), Biosurfaces (pp. 1–25). John Wiley & Sons.
  • Bassett, D. C., Olley, R. H., & Al Raheil, I. A. M. (1988). On crystallization phenomena in PEEK. Polymer, 29(10), 1745–1754. doi:10.1016/0032-3861(88)90386-2
  • Beauson, J., Schillani, G., Van der Schueren, L., & Goutianos, S. (2022). The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Composites Part A: Applied Science and Manufacturing, 152, 106668. doi:10.1016/j.compositesa.2021.106668
  • Bergström, J. S., & Hayman, D. (2016). An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Annals of Biomedical Engineering, 44(2), 330–340. doi:10.1007/s10439-015-1455-8
  • Berretta, S., Wang, Y., Davies, R., & Ghita, O. R. (2016). Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering. Journal of Materials Science, 51(10), 4778–4794. doi:10.1007/s10853-016-9761-6
  • Bizzo, W. A., Figueiredo, R. A., & De Andrade, V. F. (2014). Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials (Basel, Switzerland), 7(6), 4555–4566. doi:10.3390/ma7064555
  • Delaizir, G., & Calvez, L. (2012). A novel approach to develop chalcogenide glasses and glass-ceramics by pulsed current electrical sintering (PCES). In A. Lakshmanan (Ed), Sintering of ceramics – New emerging techniques (pp. 281–306). InTechOpen.
  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Elsevier B.V.
  • Farid, T., Herrera, V. N., & Kristiina, O. (2018). Investigation of crystalline structure of plasticized poly (lactic acid)/banana nanofibers composites. IOP Conference Series: Materials Science and Engineering, 369(1).
  • Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – cohosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA). Bonn/Geneva/Rotterdam.
  • Gonçalves, C., Gonçalves, I. C., Magalhães, F. D., & Pinto, A. M. (2017). Poly(lactic acid) composites containing carbon-based nanomaterials: A review. Polymers, 9(7), 269. doi:10.3390/polym9070269
  • Gong, X., Pan, L., Tang, C. Y., Chen, L., Li, C., Wu, C., Law, W.-C., Wang, X., Tsui, C. P., & Xie, X. (2016). Investigating the crystallization behavior of poly(lactic acid) using CdSe/ZnS quantum dots as heterogeneous nucleating agents. Composites Part B: Engineering, 91, 103–110. doi:10.1016/j.compositesb.2015.12.032
  • Gracia-Fernández, C. A., Gómez-Barreiro, S., López-Beceiro, J., Naya, S., & Artiaga, R. (2012). New approach to the double melting peak of poly(l-lactic acid) observed by DSC. Journal of Materials Research, 27(10), 1379–1382. doi:10.1557/jmr.2012.57
  • Guo, J., Guo, J., & Xu, Z. (2009). Recycling of non-metallic fractions from waste printed circuit boards : A review. Journal of Hazardous Materials, 168(2–3), 567–590. doi:10.1016/j.jhazmat.2009.02.104
  • Halim, N. A., Mogan, J., Sandanamsamy, L., Harun, W. S. W., Kadirgama, K., Ramasamy, D., & Tarlochan, F. (2021). A review on 3D printed polymer-based composite for thermal applications. IOP Conference Series: Materials Science and Engineering., 1078(1), 12029.
  • Hausnerova, B., Honkova, N., Kitano, T., & Saha, P. (2009). Superposed flow properties of ceramic powder-filled polymer melts. Polymer Composites, 30(8), 1027–1034. doi:10.1002/pc.20645
  • Huang, J.-W., Hung, Y. C., Wen, Y.-L., Kang, C.-C., & Yeh, M.-Y. (2009). Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. Journal of Applied Polymer Science, 112(5), 3149–3156. doi:10.1002/app.29699
  • Iannace, S., Sorrentino, L., & Di Maio, E. (2014). Biodegradable biomedical foam scaffolds. In P. A. Netti (Ed), Biomedical foams for tissue engineering applications (No. iv, pp. 163–187). Woodhead Publishing Limited.
  • Jadhav, U., & Hocheng, H. (2015). Hydrometallurgical recovery of metals from large printed circuit board pieces. Scientific Reports, 5(1), 14574. doi:10.1038/srep14574
  • Jonas, A. M., Russell, T. P., & Yoon, D. Y. (1995). Synchrotron X-ray scattering studies of crystallization of poly(ether-ether-ketone) from the glass and structural changes during subsequent heating-cooling processes. Macromolecules, 28(25), 8491–8503. doi:10.1021/ma00129a005
  • Kalb, B., & Pennings, A. J. (1980). General crystallization behaviour of poly(l-lactic acid). Polymer, 21(6), 607–612. doi:10.1016/0032-3861(80)90315-8
  • Kaully, T., Siegmann, A., & Shacham, D. (2008). Rheology of highly filled natural CaCO3 composites. II. Effects of solid loading and particle size distribution on rotational rheometry. Polymer Composites, 28(4), 524–533. doi:10.1002/pc.20309
  • Kiatiporntipthak, K., Nanthicha, T., Thidarat, K., Pornchai, R., Noppol, L., Yuthana, P., David, R., Warintorn, R., Sarana Rose, S., & Kittisak, J. (2021). Reaction mechanism and mechanical property improvement of poly(lactic acid) reactive blending with epoxy resin. Polymers (Basel), 13(15), 1–12.
  • Kumar, A., Choudhary, V., Khanna, R., Tripathi, S. N., Ikram-Ul-Haq, M., & Sahajwalla, V. (2016). Structural, thermal, morphological and dynamic mechanical characteristics of waste-reinforced polypropylene composites: A novel approach for recycling electronic waste. Journal of Applied Polymer Science, 133(18), 1–11.
  • Li, X., Ni, Z., Bai, S., & Lou, B. (2018). Preparation and mechanical properties of fiber reinforced PLA for 3D printing materials. IOP Conference Series: Materials Science and Engineering, 322(2), 1–7.
  • Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 117(15), 10212–10290. doi:10.1021/acs.chemrev.7b00074
  • Lingesh, B. V., Rudresh, B. M., & Ravikumar, B. N. (2014). Effect of short glass fibers on mechanical properties of polyamide66 and polypropylene (PA66/PP) thermoplastic blend composites. Procedia Materials Science, 5, 1231–1240. doi:10.1016/j.mspro.2014.07.434
  • Madeleine, P. (2021). PLA vs PETG [Online]. Retrieved on May 26, 2022, from https://www.3dnatives.com/en/pla-vs-petg-which-material-should-you-choose-110520215/
  • Malinowski, R., Janczak, K., Rytlewski, P., Raszkowska-Kaczor, A., Moraczewski, K., & Zuk, T. (2015). Influence of glass microspheres on selected properties of polylactide composites. Composites Part B: Engineering, 76, 13–19. doi:10.1016/j.compositesb.2015.02.013
  • McNiffe, E., Ritter, T., Higgins, T., Sam-Daliri, O., Flanagan, T., Walls, M., Ghabezi, P., Finnegan, W., Mitchell, S., & Harrison, N. M. (2023). Advancements in Functionally Graded Polyether Ether Ketone Components: Design, Manufacturing, and Characterisation Using a Modified 3D Printer. Polymers, 15, 2992.
  • Mishra, P. K., & Jagadesh, T. (2022). Applications and challenges of 3D printed polymer composites in the emerging domain of automotive and aerospace: A converged review. Journal of the Institution of Engineers (India): Series D, 104, 849–866.
  • Onwughara, N. I., Nnorom, I. C., Kanno, O. C., & Chukwuma, R. C. (2010). Disposal methods and heavy metals released from certain electrical and electronic equipment wastes in Nigeria: Adoption of environmental sound recycling system. International Journal of Environmental Science and Development, 1(4), 290–297. doi:10.7763/IJESD.2010.V1.57
  • Pei, A., Zhou, Q., & Berglund, L. A. (2010). Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) - Crystallization and mechanical property effects. Composites Science and Technology, 70(5), 815–821. doi:10.1016/j.compscitech.2010.01.018
  • Pillin, I., Montrelay, N., Bourmaud, A., & Grohens, Y. (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 93(2), 321–328. doi:10.1016/j.polymdegradstab.2007.12.005
  • Rajisha, K. R., Deepa, B., Pothan, L. A., & Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. In N. E. Zafeiropoulos (Ed), Interface engineering of natural fibre composites for maximum performance (pp. 241–274). Woodhead Publishing Limited.
  • Rueda, M. M., et al. (2017). In J. L. Rivera-Armenta, Beatriz Adriana Salazar Cruz (Eds), Rheology and applications of highly filled polymers: A review of current understanding. Elsevier Ltd.
  • Sam-Daliri, O., Ghabezi, P., Flanagan, T., Finnegan, W., Mitchell, S., & Harrison, N. (2022). Recovery of particle reinforced composite 3D printing filament from recycled recovery of particle reinforced composite 3D printing filament from recycled industrial polypropylene and glass fibre waste. Proc. World Congr. Mech. Chem. Mater. Eng, 177, 3–4.
  • Sam-Daliri, O., Ghabezi, P., Steinbach, J., Flanagan, T., Finnegan, W., Mitchell, S., & Harrison, N. (2023). Experimental study on mechanical properties of material extrusion additive manufactured parts from recycled glass fibre-reinforced polypropylene composite. Composites Science and Technology, 241, 110125. doi:10.1016/j.compscitech.2023.110125
  • Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46(1), 187–210. doi:10.1146/annurev-matsci-070115-031624
  • Shi, X., Zhang, G., Phuong, T. V., & Lazzeri, A. (2015). Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules (Basel, Switzerland), 20(1), 1579–1593. doi:10.3390/molecules20011579
  • Stratiotou Efstratiadis, V., & Michailidis, N. (2022). Sustainable recovery, recycle of critical metals and rare earth elements from waste electric and electronic equipment (circuits, solar, wind) and their reusability in additive manufacturing applications : A review. Metals (Basel), 12(5), 794–819. doi:10.3390/met12050794
  • Sztorch, B., Brząkalski, D., Pakuła, D., Frydrych, M., Špitalský, Z., & Przekop, R. E. (2022). Natural and synthetic polymer fillers for applications in 3D printing—FDM technology area. Solids, 3(3), 508–548. doi:10.3390/solids3030034
  • Swapp, S. [Online]. Retrieved on August 9, 2022, from https://www.tainstruments.com/hr-20/
  • Swapp, S. (n.d.). SEM [Online]. Retrieved on August 10, 2022, from https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
  • TA Instruments – ElectroForce Systems Group (n.d.). [Online]. TA Instruments Rheometer. Retrieved on August 9, 2022, https://www.tainstruments.com/wpcontent/uploads/sellsheet_3550_101509_low.pdf.
  • TA Instruments/Waters Corporation (n.d.). [Online]. Retrieved on August 9, 2022, from https://www.tainstruments.com/hr-20/
  • Tazibt, N., Kaci, M., Dehouche, N., Ragoubi, M., & Atanase, L. I. (2023). Effect of filler content on the morphology and physical properties of poly(lactic acid)-hydroxyapatite composites. Materials (Basel, Switzerland), 16(2), 809. doi:10.3390/ma16020809
  • Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., & Md Yunos, K. F. (2017). Effect of aminosilane concentrations on the properties of poly (lactic acid)/kenaf-derived cellulose composites. Polymers and Polymer Composites, 25(1), 63–76. doi:10.1177/096739111702500110
  • Thermo Fisher Scientific Inc. Thermofischer (SEM) [Online]. Retrieved on August 10, 2022, from https://assets.thermofisher.com/TFS-Assets/MSD/Datasheets/desktop-sem-datasheet-prox-DS0300.pdf
  • Thumsorn, S., Prasong, W., Kurose, T., Ishigami, A., Kobayashi, Y., & Ito, H. (2022). Rheological behavior and dynamic mechanical properties for interpretation of layer adhesion in FDM 3D printing. Polymers, 14(13), 2721. doi:10.3390/polym14132721
  • Tjong, S. C., Liang, G. D., & Bao, S. P. (2008). Finite strain 3D thermoviscoelastic constitutive model. Polymer Engineering & Science, 48(1), 177–183. doi:10.1002/pen.20949
  • Wang, G., Zhang, D., Wan, G., Li, B., & Zhao, G. (2019). Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer, 181, 121803. doi:10.1016/j.polymer.2019.121803
  • Wang, J., Li, H., Liu, R., Li, L., Lin, Y. H., & Nan, C. W. (2018). Thermoelectric and mechanical properties of PLA/Bi0.5Sb1.5Te3 composite wires used for 3D printing. Composites Science and Technology, 157, 1–9. doi:10.1016/j.compscitech.2018.01.013
  • WEEE recycle [Online]. Retrieved on August 10, 2022, from https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf
  • Wu, J.-H., Yen, M.-S., Kuo, M. C., & Chen, B.-H. (2013). Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Materials Chemistry and Physics, 142(2–3), 726–733. doi:10.1016/j.matchemphys.2013.08.031
  • Yang, D., Cao, Y., Zhang, Z., Yin, Y., & Li, D. (2021). Effects of crystallinity control on mechanical properties of 3D-printed short-carbon-fiber-reinforced polyether ether ketone composites. Polymer Testing, 97, 107149. doi:10.1016/j.polymertesting.2021.107149
  • Yang, J. G., Wu, Y. T., & Li, J. (2012). Recovery of ultrafine copper particles from metal components of waste printed circuit boards. Hydrometallurgy, 121–124, 1–6. doi:10.1016/j.hydromet.2012.04.015
  • Yin, X., Hong, L., & Liu, Z. (2005). A study on the fundamental ceramic-polymer interactions in the high CeO2-loading polyethylene glycol blend. Journal of the European Ceramic Society, 25(13), 3097–3107. doi:10.1016/j.jeurceramsoc.2004.09.018
  • Žagar, E., Češarek, U., Drinčić, A., Sitar, S., Shlyapnikov, I. M., & Pahovnik, D. (2020). Quantitative determination of PA6 and/or PA66 content in polyamide-containing wastes. ACS Sustainable Chemistry & Engineering, 8(31), 11818–11826. doi:10.1021/acssuschemeng.0c04190
  • Zhang, C., Li, Y., Kang, W., Liu, X., & Wang, Q. (2021). Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat, 1(1), 127–147. doi:10.1002/sus2.11
  • Zhang, L., Zhao, G., & Wang, G. (2021). Investigation on the α/δ crystal transition of poly(L-lactic acid) with different molecular weights. Polymers, 13(19), 1–16. doi:10.3390/polym13193280
  • Zhu, Z. H., Zhang, N., Wang, T., & Hao, M. Y. (2020). Short review of polymer composites for 3D printing. IOP Conference Series: Materials Science and Engineering, 758, 1–5.
  • Zołek-Tryznowska, Z. (2015). Rheology of printing inks. In J. Izdebska-Podsiadły & S. Thomas (Eds), Printing on polymers: Fundamentals and applications (pp. 87–99). William Andrew.