2,029
Views
10
CrossRef citations to date
0
Altmetric
Bioengineering & Biotechnology

Biosynthesized α-MnO2-based polyaniline binary composite as efficient bioanode catalyst for high-performance microbial fuel cell

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 541-568 | Received 12 Nov 2020, Accepted 19 May 2021, Published online: 04 Jun 2021

References

  • Abrevaya XC, Mauas PJD, Cortón E. 2010. Microbial fuel cells applied to the metabolically based detection of extraterrestrial life. Astrobiology. 10(10):965–971.
  • Agarry SE. 2017. Bioelectricity generation and treatment of petroleum refinery effluent by Bacillus cereus and clostridium butyricum using microbial fuel cell technology. Niger J Technol. 36(2):543. https://www.ajol.info/index.php/njt/article/view/155152.
  • Ajeel KI, Kareem QS. 2019. Synthesis and characteristics of polyaniline (PANI) filled by graphene (PANI/GR) nano-films. J Phys Conf Ser [Internet]. 1234(1):012020. https://iopscience.iop.org/article/10.1088/1742-6596/1234/1/012020.
  • Ansari SA, Parveen N, Han TH, Ansari MO, Cho MH. 2016. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys Chem Chem Phys. 18(13):9053–9060. https://doi.org/10.1039/C6CP00159A.
  • Ates M, Sarac AS, Turhan CM, Ayaz NE. 2009. Polycarbazole modified carbon fiber microelectrode: surface characterization and dopamine sensor. Fibers Polym. 10(1):46–52. http://link.springer.com/10.1007/s12221-009-0046-4.
  • Beer U, Violet C, Green B, Orange Y, Complementary R, Purple YY, When BGB, Asa-fe T. 2017. EXPERIMENT 11 UV / VIS spectroscopy and spectrophotometry: spectrophotometric analysis of Potassium permanganate. Int J Biol Chem Sci. 11(4):1893. https://www.ajol.info/index.php/ijbcs/article/view/164112.
  • Bhanvase BA, Darda NS, Veerkar NC, Shende AS, Satpute SR, Sonawane SH. 2015. Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrason Sonochem. 24(November):87–97. https://linkinghub.elsevier.com/retrieve/pii/S1350417714003435.
  • Çakir S, Biçer E, Arslan EY. 2015. A newly developed electrocatalytic oxidation and voltammetric determination of curcumin at the surface of PdNp-graphite electrode by an aqueous solution process with Al3 + . Croat Chem Acta. 88(2):105–112.
  • Danish Khan M, Abdulateif H, Ismail IM, Sabir S, Zain Khan M. 2015. Bioelectricity generation and bioremediation of an azo-dye in a microbial fuel cell coupled activated sludge process. PLoS One. 10:10.
  • Das S, Chakraborty I, Rajesh PP, Ghangrekar MM. 2020. Performance evaluation of microbial fuel cell operated with Pd or MnO 2 as cathode catalyst and chaetoceros pretreated anodic inoculum. J hazardous, toxic. Radioact Waste. 24(3):04020009.
  • David IG, Popa DE, Buleandra M. 2017. Pencil graphite electrodes: A versatile tool in electroanalysis. J Anal Methods Chem. 2017(Cv):1–22. https://www.hindawi.com/journals/jamc/2017/1905968/.
  • Dessie Y, Admassie S. 2013. Electrochemical study of conducting polymer/lignin composites. Orient J Chem. 29(4):1359–1369. http://www.orientjchem.org/vol29no4/electrochemical-study-of-conducting-polymerlignin-composites/.
  • Dessie Y, Tadesse S, Eswaramoorthy R. 2020a. Review on manganese oxide based biocatalyst in microbial fuel cell: nanocomposite approach. Mater Sci Energy Technol. 3:136–149. https://doi.org/10.1016/j.mset.2019.11.001%0A https://linkinghub.elsevier.com/retrieve/pii/S2589299119301387.
  • Dessie Y, Tadesse S, Eswaramoorthy R. 2020b. Physicochemical parameter influences and their optimization on the biosynthesis of MnO2 nanoparticles using Vernonia amygdalina leaf extract. Arab J Chem. 13(8):6472–6492. https://doi.org/10.1016/j.arabjc.2020.06.006.
  • Dessie Y, Tadesse S, Eswaramoorthy R, Abdisa E. 2021. Bimetallic Mn–Ni oxide nanoparticles: Green synthesis, optimization and its low-cost anode modifier catalyst in microbial fuel cell. Nano-Structures & Nano-Objects. 25:100663.
  • Dessie Y, Tadesse S, Eswaramoorthy R, Abebe B. 2019. Recent developments in manganese oxide based nanomaterials with oxygen reduction reaction functionalities for energy conversion and storage applications: A review. J Sci Adv Mater Devices. 4(3):353–369. https://linkinghub.elsevier.com/retrieve/pii/S2468217919302023.
  • Divya Priya A, Deva S, Shalini P, Pydi Setty Y. 2020. Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance. Renew Energy. 150:156–166. https://doi.org/10.1016/j.renene.2019.12.109.
  • Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J. 2006. MnO 2 -Embedded-in-Mesoporous-Carbon-Wall structure for Use as Electrochemical capacitors. J Phys Chem B. 110(12):6015–6019. https://pubs.acs.org/doi/10.1021/jp056754n.
  • Elawwad A, Husein DZ, Ragab M, Hamdy A. 2020. Enhancing the performance of microbial desalination cells using δMnO2/graphene nanocomposite as a cathode catalyst. J Water Reuse Desalin. 10(3):214–226. https://iwaponline.com/jwrd/article/doi/10.2166/wrd.2020.011/75430/Enhancing-the-performance-of-microbial.
  • Etana BB, Ramakrishnan S, Dhakshnamoorthy M, Saravanan S, Ramamurthy P C, Demissie TA. 2019. Functionalization of textile cotton fabric with reduced graphene oxide/MnO 2 /polyaniline based electrode for supercapacitor. Mater Res Express. 6(12):125708. https://iopscience.iop.org/article/10.1088/2053-1591/ab669d.
  • Evelyn SE, Amri A, Marshall A, Gostomski P. 2019. Reaction kinetics for microbial-reduced mediator in an ethanol-fed microbial fuel cell. In: Olivia M, Marto A, Yamamoto K, Wishart D, Saputra E., Ketut Sudarsana ID, Agus Ariawan IM, Infantri Yekti M, Ridwan R, Wibisono G, editors. MATEC Web Conf [Internet]. 276. p. 06010; https://www.matec-conferences.org/10.1051/matecconf/201927606010.
  • Geetanjali RR, Kumar S. 2019. High-capacity polyaniline-coated molybdenum oxide composite as an effective catalyst for enhancing the electrochemical performance of the microbial fuel cell. Int J Hydrogen Energy. 44(31):16933–16943. https://doi.org/10.1016/j.ijhydene.2019.04.201.
  • Gnana kumar G, Awan Z, Suk Nahm K, Stanley Xavier J. 2014. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosens Bioelectron. 53:528–534. http://doi.org/10.1016/j.bios.2013.10.012.
  • Goh C-P, Lim P-E. 2008. Potassium Permanganate as oxidant in the Cod test for saline water samples. ASEAN J Sci Technol Dev. 25(2):383–393.
  • Gong J, Xu Z, Tang Z, Zhong J, Zhang L. 2019. Highly compressible 3-D hierarchical porous carbon nanotube/metal organic framework/polyaniline hybrid sponges supercapacitors. AIP Adv. 9(5):055032. http://doi.org/10.1063/1.5109042.
  • Goswami C, Hazarika KK, Bharali P. 2018. Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater Sci Energy Technol. 1(2):117–128. https://doi.org/10.1016/j.mset.2018.06.005.
  • Haoran Y, Deng L, Chen Y, Yuan Y. 2016. Mno2/polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Electrochim Acta. 196:280–285. https://linkinghub.elsevier.com/retrieve/pii/S0013468616304856.
  • Harshiny M, Samsudeen N, Kameswara RJ, Matheswaran M. 2017. Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. Int J Hydrogen Energy. 42(42):26488–26495.
  • He D, Rauwel E, Malpass-Evans R, Carta M, McKeown NB, Gorle DB, Anbu Kulandainathan M, Marken F. 2017. Redox reactivity at silver microparticle—glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). J Solid State Electrochem. 21(7):2141–2146.
  • He J, Wang M, Wang W, Miao R, Zhong W, Chen S-Y, Poges S, Jafari T, Song W, Liu J, Suib SL. 2017. Hierarchical Mesoporous NiO/MnO 2 @PANI core–shell microspheres, highly efficient and stable Bifunctional electrocatalysts for oxygen evolution and reduction reactions. ACS Appl Mater Interfaces. 9(49):42676–42687. https://pubs.acs.org/doi/10.1021/acsami.7b07383.
  • Heyang Y, Hou Y, Abu-Reesh IM, Chen J, He Z. 2016. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater Horizons. 3(5):382–401. http://doi.org/10.1039/C6MH00093B.
  • Hindatu Y, Annuar MSM, Gumel AM. 2017. Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sustain Energy Rev. 73(November 2016):236–248.
  • Hou J, Liu Z, Zhang P. 2013. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources. 224:139–144. http://doi.org/10.1016/j.jpowsour.2012.09.091.
  • Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X. 2015. High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers (Basel). 7(10):1939–1953.
  • Huang J, Zhu N, Yang T, Zhang T, Wu P, Dang Z. 2015. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron. 72:332–339. http://doi.org/10.1016/j.bios.2015.05.035.
  • Inamdar HK, Basavaraj RB, Nagabhushana H, Devendrappa M, Ambalgi S, Sannakki B, Mathad RD. 2016. DC conductivity study of polyaniline/NiO nanocomposites prepared through Green synthesis. Mater Today Proc. 3(10):3850–3854. http://doi.org/10.1016/j.matpr.2016.11.039.
  • Jia Y, Qi Z, You H. 2018. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells. J Cent South Univ. 25(3):499–505.
  • Julien CM, Mauger A. 2017. Nanostructured mno2 as electrode materials for energy storage. Nanomaterials. 7(11):396.
  • Kalathil S, Nguyen VH, Shim JJ, Khan MM, Lee J, Cho MH. 2013. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanotechnol. 13(11):7712–7716.
  • Kariuki J, Ervin E, Olafson C. 2015. Development of a novel, low-cost, disposable wooden pencil graphite electrode for use in the determination of antioxidants and other biological compounds. Sensors (Switzerland). 15(8):18887–18900. http://www.mdpi.com/1424-8220/15/8/18887.
  • Karthikeyan R, Krishnaraj N, Selvam A, Wong JWC, Lee PKH, Leung MKH, Berchmans S. 2016. Effect of composites based nickel foam anode in microbial fuel cell using acetobacter aceti and gluconobacter roseus as a biocatalysts. Bioresour Technol. 217:113–120. https://linkinghub.elsevier.com/retrieve/pii/S0960852416302607.
  • Kim BC, Justin Raj C, Cho W-J, Lee W-G, Jeong HT, Yu KH. 2014. Enhanced electrochemical properties of cobalt doped manganese dioxide nanowires. J Alloys Compd. 617:491–497. https://linkinghub.elsevier.com/retrieve/pii/S0925838814018738.
  • Le T, Yang Y, Yu L, Huang Z, Kang F. 2016. In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Sci Rep. 6(1):37368. http://www.nature.com/articles/srep37368.
  • Li S, Pan Q, Xiao K, Ouyang T, Li N, Liu Z. 2019. Metallic Co 9 S 8 coupled Hollow N-doped carbon sphere with synergistic interface structure for efficient electricity generation in microbial fuel cells. ChemCatChem. 11(24):6116–6123. https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201901667.
  • Li J-C, Wu X-T, Chen L-J, Li N, Liu Z-Q. 2018. Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs. Energy. 156:95–102. https://doi.org/10.1016/j.energy.2018.05.096.
  • Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. 2018. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv. 36(4):1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010.
  • Liao ZH, Sun JZ, Sun DZ, Si RW, Yong YC. 2015. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresour Technol. 192:831–834. http://doi.org/10.1016/j.biortech.2015.05.105.
  • Madhusudhana MG, Bhakta AK, Mekhalif Z, Mascarenhas RJ. 2020. Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; an electrochemical sensor for sensitive determination of Gallic acid at neutral pH. Mater Sci Energy Technol. 3:174–182. https://doi.org/10.1016/j.mset.2019.10.001.
  • Mahadevan A, Gunawardena DA, Fernando S. 2014. Biochemical and Electrochemical perspectives of the anode of a microbial fuel cell. Technol Appl Microb Fuel Cells. i:13. http://doi.org/10.5772/58755
  • Mahajan AP, Kondawar SB, Mahore RP, Meshram BH, Virutkar PD. 2015. Polyaniline/MnO2 nanocomposites based stainless steel electrode modified enzymatic urease biosensor. Procedia Mater Sci. 10(Cnt 2014):699–705. http://doi.org/10.1016/j.mspro.2015.06.075.
  • Mahmudi M, Widiyastuti W, Nurlilasari P, Affandi S, Setyawan H. 2018. Manganese dioxide nanoparticles synthesized by electrochemical method and its catalytic activity towards oxygen reduction reaction. J Ceram Soc Japan. 126(11):906–913.
  • Malik D, Thakur J, Singh S, Sakaksnak RK. 2014. Nanocomposite electrode microbial fuel cell:A promising Technology for enhanced power generation from Yamuna water. Int J Sci Res. 3(7):641–646. https://www.ijsr.net/archive/v3i7/MDIwMTQxMDMy.pdf.
  • Mathew S, Thomas PC. 2020. Fabrication of polyaniline nanocomposites as electrode material for power generation in microbial fuel cells. Mater Today Proc. 33:1415–1419. https://doi.org/10.1016/j.matpr.2020.06.502.
  • Mazzeu MAC, Faria LK, Cardoso A, Gama AM, Baldan MR, Gonçalves ES. 2017. Structural and morphological characteristics of polyaniline synthesized in pilot scale. J Aerosp Technol Manag. 9(1):39–47. http://www.jatm.com.br/ojs/index.php/jatm/article/view/726.
  • Mehdinia A, Dejaloud M, Jabbari A. 2013. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output. Chem Pap. 67(8):1096–1102.
  • Mink JE, Qaisi RM, Logan BE, Hussain MM. 2014. Energy harvesting from organic liquids in micro-sized microbial fuel cells. NPG Asia Mater. 6(3):1–5.
  • Mishra P, Jain R. 2016. Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrogen Energy. 41(47):22394–22405. http://doi.org/10.1016/j.ijhydene.2016.09.020.
  • Mohammad Shafiee MR, Sattari A, Kargar M, Ghashang M. 2019. Mno2/Cr2O3/PANI nanocomposites prepared by in situ oxidation polymerization method: optical and electrical behaviors. J Appl Polym Sci. 136(15):47219. http://doi.wiley.com/10.1002/app.47219.
  • Mphuthi NG, Adekunle AS, Fayemi OE, Olasunkanmi LO, Ebenso EE. 2017. Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Sci Rep. 7(1):43181. http://www.nature.com/articles/srep43181.
  • Mu B, Zhang W, Xu W, Wang A. 2015. Hollowed-out tubular carbon@MnO 2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochim Acta. 178:709–720. http://doi.org/10.1016/j.electacta.2015.08.091.
  • Oljira T, Muleta D, Jida M. 2018. Potential applications of some indigenous bacteria isolated from polluted areas in the treatment of brewery effluents. Biotechnol Res Int. 2018:1–13. https://www.hindawi.com/archive/2018/9745198/.
  • Pandit S, Khilari S, Roy S, Pradhan D, Das D. 2014. Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions. Bioresour Technol. 166:451–457. https://linkinghub.elsevier.com/retrieve/pii/S096085241400741X.
  • Patade S, Silveira K, Babu A, Mhatre Y, Saini V, Rajput R, Mathew J, Birmole R. 2016. Bioremediation of Dye effluent waste through an optimised microbial fuel cell. Int J Adv Res Biol Sci Int J Adv Res Biol Sci www.Ijarbs.com. 3(3):214–226. http://s-o-i.org/1.15/ijarbs-2016-3-5-31.
  • Qian F, Baum M, Gu Q, Morse DE. 2009. A 1.5 µl microbial fuel cell for on-chip bioelectricity generation.Lab Chip. 9(21):3076–3081. http://xlink.rsc.org/?DOI=b910586g.
  • Rajesh PP, Noori MT, Ghangrekar MM. 2020. Improving performance of microbial fuel cell by using polyaniline-coated carbon–felt anode. J Hazardous Toxic Radioact Waste. 24(3):04020024. http://ascelibrary.org/doi/10.1061/(28ASCE)HZ.2153-5515.0000512.
  • Relekar BP, Fulari A V, Lohar GM, Fulari VJ. 2019. Development of porous manganese oxide/polyaniline composite using Electrochemical route for Electrochemical supercapacitor. J Electron Mater. 48(4):2449–2455.
  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 40(8):2629–2634.
  • Salman RH, Abed KM, Hassan HA. 2019. Energy generation by membraneless microfluidic fuel cell using acidic wastewater as a fuel. Int J Ambient Energy. 0(0):1–17.
  • Sankar S, Inamdar AI, Im H, Lee S, Kim DY. 2018. Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceram Int. 44(14):17514–17521. https://doi.org/10.1016/j.ceramint.2018.05.207.
  • Sapurina I, Stejskal J. 2009. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chem Pap. 63(5):579–585. http://www.degruyter.com/view/j/chempap.2009.63.issue-5/s11696-009-0061-3/s11696-009-0061-3.xml.
  • Shah A-HA, Khan MO, Bilal S, Rahman G, Van HH.2018. Electrochemical co-deposition and characteriza-tion of polyaniline and manganese oxide nanofibrouscomposites for energy storage properties. Adv PolymTechnol. 37(6):2230–2237. http://doi.wiley.com/10.1002/adv.21881.
  • Shimamura N, Kanda R, Matsukubo Y, Yutaro H, Abe H, Yuji H, Yoshida T, Yabu H, Masuhara A. 2019. Preparation of hierarchic porous films of α-MnO 2 nanoparticles by using the Breath Figure technique and application for hybrid capacitor electrodes. ACS Omega. 4(2):3827–3831. https://pubs.acs.org/doi/10.1021/acsomega.8b03381.
  • Singh P, Shukla SK. 2020. Advances in polyaniline-based nanocomposites. J Mater Sci. 55(4):1331–1365. https://doi.org/10.1007/s10853-019-04141-z.
  • Sonawane JM, Patil SA, Ghosh PC, Adeloju SB. 2018. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J Power Sources. 379(November 2017):103–114. https://doi.org/10.1016/j.jpowsour.2018.01.001.
  • Sun X, Li Q, Lü Y, Mao Y. 2013. Three-dimensional ZnO@MnO2 core@shell nanostructures for electrochemical energy storage. Chem Commun. 49(40):4456–4458. http://xlink.rsc.org/?DOI=c3cc41048j.
  • Tahtaisleyen S, Gorduk O, Sahin Y. 2020. Electrochemical determination of sunset yellow using an Electrochemically prepared graphene oxide modified–pencil graphite electrode (EGO-PGE). Anal Lett. 0(0):1–23.
  • Tan L, Li SJ, Wu XT, Li N, Liu ZQ. 2018. Porous Co3O4 decorated nitrogen-doped graphene electrocatalysts for efficient bioelectricity generation in MFCs. Int J Hydrogen Energy. 43(22):10311–10321. https://doi.org/10.1016/j.ijhydene.2018.04.074.
  • Tan L, Yang Y-D, Li N, Chen S, Liu Z-Q. 2017. Enhanced activity and stability of Co 3 O 4 -decorated nitrogen-doped carbon hollow sphere catalysts for microbial fuel cells. Catal Sci Technol. 7(6):1315–1323. http://xlink.rsc.org/?DOI=C6CY02450E.
  • Tanwar S, Ho JAA. 2015. Green synthesis of novel polyaniline nanofibers: application in pH sensing. Molecules. 20(10):18585–18596.
  • Tikish TA, Kumar A, Kim JY. 2018. Study on the miscibility of Polypyrrole and polyaniline polymer blends. Adv Mater Sci Eng. 2018:8–13.
  • Trindade ECA, Antônio RV, Brandes R, de Souza L, Neto G, Vargas VMM, Carminatti CA, de Oliveira SRD. 2020. Carbon fiber-embedded bacterial cellulose/polyaniline nanocomposite with tailored for microbial fuel cells electrode. J Appl Polym Sci. 137(35):49036.
  • Tsuji R, Masutani H, Haruyama Y, Niibe M, Suzuki S, Honda SI, Matsuo Y, Heya A, Matsuo N, Ito S. 2019. Water electrolysis using flame-annealed pencil-graphite rods. ACS Sustain Chem Eng. 7(6):5681–5689. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04688.
  • Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y. 2013. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale. 5(21):10283–10290. http://xlink.rsc.org/?DOI=c3nr03487a.
  • Wang Y, Wen Q, Chen Y, Qi L. 2017. A novel polyaniline interlayer manganese dioxide composite anode for high-performance microbial fuel cell. J Taiwan Inst Chem Eng. 75:112–118.
  • Wu G, Bao H, Xia Z, Yang B, Lei L, Li Z, Liu C. 2018. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J Power Sources. 384(November 2017):86–92. https://doi.org/10.1016/j.jpowsour.2018.02.045.
  • Wu X-T, Li J-C, Pan Q-R, Li N, Liu Z-Q. 2018. Gallic acid-assisted synthesis of Pd uniformly anchored on porous N-rGO as efficient electrocatalyst for microbial fuel cells. Dalt Trans. 47(5):1442–1450. http://xlink.rsc.org/?DOI=C7DT04063F.
  • Wu W, Niu H, Yang D, Wang S, Jiang N, Wang J, Lin J, Hu C. 2018. Polyaniline/carbon nanotubes composite modified anode via graft polymerization and self-assembling for microbial fuel cells. Polymers (Basel). 10(7):759. http://www.mdpi.com/2073-4360/10/7/759.
  • Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M. 2010. High-Energy MnO 2 nanowire/graphene and graphene Asymmetric Electrochemical capacitors. ACS Nano. 4(10):5835–5842. https://pubs.acs.org/doi/10.1021/nn101754k.
  • Wu X, Shi Z, Zou L, Li CM, Qiao Y. 2018. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells. J Power Sources. 378(November 2017):119–124. https://doi.org/10.1016/j.jpowsour.2017.12.023.
  • Yaqoob AA, Ibrahim MNM, Rodríguez-Couto S. 2020. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem Eng J. 164(June):107779.
  • Yu P, Wang Q, Zheng L, Jiang Y. 2019. Construction of ultrathin nitrogen-doped porous carbon nanospheres coated With polyaniline nanorods for Asymmetric supercapacitors. Front Chem. 7(June):1–11. https://www.frontiersin.org/article/10.3389/fchem.2019.00455/full.
  • Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X. 2016. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron. 81:32–38. http://doi.org/10.1016/j.bios.2016.02.051.
  • Zhao C, Gai P, Liu C, Wang X, Xu H, Zhang J, Zhu JJ. 2013. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J Mater Chem A. 1(40):12587–12594.
  • Zhao S, Li Y, Wang Y, Ma Z, Huang X. 2019. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing. Fuel. 244(January):78–90. https://doi.org/10.1016/j.fuel.2019.02.001.
  • Zhao X, Tian T, Guo M, Xin L, Xiang L. 2020. Cauliflower-like polypyrrole@MnO2 modified carbon cloth as a capacitive anode for high-performance microbial fuel cells. J Chem Technol Biotechnol. 95(1):163–172. https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.6218.
  • Zhong D, Liu Y, Liao X, Zhong N, Xu Y. 2018. Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell. Int J Hydrogen Energy. 43(51):23014–23026. https://doi.org/10.1016/j.ijhydene.2018.10.144.
  • Zhou X, Xu Y, Mei X, Du N, Jv R, Hu Z, Chen S. 2018. Polyaniline/Β-MnO2 nanocomposites as cathode electrocatalyst for oxygen reduction reaction in microbial fuel cells. Chemosphere. 198:482–491. https://doi.org/10.1016/j.chemosphere.2018.01.058.