1,910
Views
4
CrossRef citations to date
0
Altmetric
Agriculture

CDDP and ISSR markers-assisted diversity and structure analysis in Iraqi Mazu (Quercus infectoria Oliv.) accessions

, & ORCID Icon
Pages 247-261 | Received 12 Oct 2021, Accepted 01 Jan 2022, Published online: 18 Feb 2022

References

  • Ahmed DA, Tahir NAr, Salih SH, Talebi R. 2021. Genome diversity and population structure analysis of Iranian landrace and improved barley (Hordeum vulgare L.) genotypes using arbitrary functional gene-based molecular markers. Genet Resour Crop Evol. 68:1045–1060.
  • Alansi S, Tarroum M, Al-Qurainy F, Khan S, Nadeem M. 2016. Use of ISSR markers to assess the genetic diversity in wild medicinal Ziziphus spina-christi (L.) Willd. collected from different regions of Saudi Arabia. Biotechnol Biotechnol Equip. 30:942–947.
  • Alikhani L, Rahmani M-S, Shabanian N, Badakhshan H, Khadivi-Khub A. 2014. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene. 552:176–183.
  • Basri DF, Tan LS, Shafiei Z, Zin NM. 2011. In vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid Based Complement Alternat Med. 2012:632796.
  • Bhattacharjee SK. 2000. Handbook of medicinal plants.
  • Cires E, Sanna M, Vázquez V, Fernández Prieto JA. 2018. Genetics and conservation of rare and endemic plants: the case of “Genista sanabrensis” (Fabaceae) in the Iberian Peninsula. Mediterr Bot. 39:77–87.
  • Collard BCY, Mackill DJ. 2009. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol Biol Rep. 27:558.
  • Conte L, Cotti C, Cristofolini G. 2007. Molecular evidence for hybrid origin of Quercus crenata Lam. (Fagaceae) from Q. cerris L. and Q. suber L. Plant Biosyst. 141:181–193.
  • Dar M, Ikram M. 1979. Studies on Quercus infectoria; isolation of syringic acid and determination of its central depressive activity. Planta Med. 35:156–161.
  • Debnath SC. 2008. Inter simple sequence repeat (ISSR) markers and pedigree information to assess genetic diversity and relatedness within Raspberry genotypes. Int J Fruit Sci. 7:1–17.
  • de Riek J, Calsyn E, Gil Everaert I, Van Bockstaele E, de Loose M. 2001. Aflp based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet. 103:1254–1265.
  • Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. 2021. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. J Ethnopharmacol. 12:113592.
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol. 14:2611–2620.
  • Ferrão LFV, Caixeta ET, Souza FdF, Zambolim EM, Cruz CD, Zambolim L, Sakiyama NS. 2013. Comparative study of different molecular markers for classifying and establishing genetic relationships in Coffea canephora. Plant Syst Evol. 299:225–238.
  • Frankham R. 1995. Conservation genetics. Annu Rev Genet. 29:305–327.
  • Griffiths G. 1993. Fine structure immunocytochemistry. Berlin: Springer Berlin Heidelberg. ISBN: 978-3-642-77097-5.
  • Guest E, Townsend CC. 1966. Flora of Iraq. Baghdad, Ministry of Agriculture of the Republic of Iraq, Richmond, Surrey: Royal Botanic Gardens, KEW.
  • Gupta PK, Varshney RK, Sharma PC, Ramesh B. 1999. Reviewmolecular markers and their applications in wheat breeding. Plant Breed. 118:369–390.
  • Igwe DO, Ihearahu OC, Osano AA, Acquaah G, Ude GN. 2021. Genetic diversity and population assessment of Musa L. (Musaceae) employing CDDP markers. Plant Mol Biol Rep. 39:801–820.
  • Ikram M, Nowshad F. 1977. Constituents of Quercus infectoria. Planta Med. 31:286–287.
  • Jiajun Y, Shi-qie B, Xinquan Z, Dan C, Minghong Y, Changbing Z, Daxu L. 2010. Genetic diversity of native Elymus sibiricus populations in the Southeastern Margin of Qinghai-Tibetan Plateau as detected by SRAP and SSR markers. Acta Prataculturae Sci. 19:122–134.
  • Khwarahm NR. 2020. Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecol Process. 9:56.
  • Kumar A, Mishra P, Singh SC, Sundaresan V. 2014. Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Syst Evol. 300:1409–1420.
  • Kumar P, Gupta VK, Misra AK, Modi PB. 2009. Potential of molecular markers in plant biotechnology. Plant Omics. 2:141–162.
  • Lim TK. 2012. Quercus infectoria. In: Lim TK, editor. Edible medicinal and non-medicinal plants. Dordrecht: Springer; p. 16–26.
  • Liu H, Zang F, Wu Q, Ma Y, Zheng Y, Zang D. 2020. Genetic diversity and population structure of the endangered plant Salix taishanensis based on CDDP markers. Glob Ecol Conserv. 24:e01242.
  • Loveless MD, Hamrick JL. 1984. Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst. 15:65–95.
  • Mahar KS, Rana TS, Ranade SA, Pande V, Palni LMS. 2013. Estimation of genetic variability and population structure in Sapindus trifoliatus L., using DNA fingerprinting methods. Trees. 27:85–96.
  • Mayer F, editor. 1988. Electron microscopy in microbiology: volume 20. 1. Aufl. s.l.: Elsevier Textbooks. 431 p. (Methods in microbiology; v.20). ISBN: 0125215207.
  • Mei Z, Zhang C, Khan MA, Zhu Y, Tania M, Luo P, Fu J. 2015. Efficiency of improved RAPD and ISSR markers in assessing genetic diversity and relationships in Angelica sinensis (Oliv.) Diels varieties of China. Electron J Biotechnol. 18:96–102.
  • Mohammad-Panah N, Shabanian N, Khadivi A, Rahmani M-S, Emami A. 2017. Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genet Genomes. 13:1–12.
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155:945–959.
  • Rakshit S, Swapna M. 2015. DNA markers in diversity analysis. In: Madhusudhana R, Rajendrakumar P, Patil JV, editor. Sorghum molecular breeding. New Delhi: Springer; p. 23–46.
  • Roldán-Ruiz I, Dendauw J, van Bockstaele E, Depicker A, de Loose M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed. 6:125–134.
  • Schoen DJ, Brown AH. 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA. 88:4494–4497.
  • Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science. 236:787–792.
  • Taib M, Rezzak Y, Bouyazza L, Lyoussi B. 2020. Medicinal uses, phytochemistry, and pharmacological activities of Quercus Species. Evid Based Complement Alternat Med. 2020:1920683.
  • Talebi R, Nosrati S, Etminan A, Naji AM. 2018. Genetic diversity and population structure analysis of landrace and improved safflower (Cartamus tinctorious L.) germplasm using arbitrary functional gene-based molecular markers. Biotechnol Biotechnol Equip. 32:1183–1194.
  • Tayel AA, El-Sedfy MA, Ibrahim AI, Moussa SH. 2018. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination. Rev Argent Microbiol. 50:391–397.
  • Torres-Ruiz JM, Kremer A, Carins Murphy MR, Brodribb T, Lamarque LJ, Truffaut L, Bonne F, Ducousso A, Delzon S. 2019. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 39:1736–1749.
  • Zohary M. 1973. Geobotanical foundations of the Middle East. vol. 1 and 2. Stuttgart: Swets and Zeitlinger.