4,672
Views
5
CrossRef citations to date
0
Altmetric
Microbiology (Environmental)

An update of a green pesticide: Metarhizium anisopliae

, , , , , & show all
Pages 1141-1159 | Received 17 Dec 2021, Accepted 25 Sep 2022, Published online: 17 Nov 2022

References

  • Abdellaoui K, Miladi M, Mkhinini M, Boughattas I, Ben Hamouda A, Hajji-Hedfi L, et al. 2020. The aggregation pheromone phenylacetonitrile: Joint action with the entomopathogenic fungus Metarhizium anisopliae var. acridum and physiological and transcriptomic effects on Schistocerca gregaria nymphs. Pestic Biochem Phys. 167:104594. doi:10.1016/j.pestbp.2020.104594.
  • Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. 2012. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop. 121(2):71–84. doi:10.1016/j.actatropica.2011.11.001.
  • Abro NA, Wang G, Ullah H, Long GL, Hao K, Nong X, et al. 2019. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust. Environ Sci Pollut R. 26(17):17797–17808. doi:10.1007/s11356-019-05158-2.
  • Abuowarda MM, Haleem M, Elsayed M, Farag H. 2020. Bio-Pesticide control of the brown dog tick (rhipicephalus sanguineus) in Egypt by using two entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae). Int J Vet Sci. 9:175–181.
  • Acheampong MA, Hill MP, Moore SD, Coombes CA. 2020. UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol. 124(5):304–310. doi:10.1016/j.funbio.2019.08.009.
  • Albernaz DA, Tai MH, Luz C. 2009. Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti. Med Vet Entomol. 23(2):141–147. doi:10.1111/j.1365-2915.2008.00792.x.
  • Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, Mattoso TC, Bull JC, et al. 2016. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog. 12(7):e1005715. doi:10.1371/journal.ppat.1005715.
  • Ashraf M, Farooq M, Shakeel M, Din N, Hussain S, Saeed N, Shakeel Q, Rajput NA. 2017. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests. Environ Sci Pollut Res. 24(36):28165–28174. doi:10.1007/s11356-017-0383-6.
  • Athanassiou CG, Kavallieratos NG, Rumbos CI, Kontodimas DC. 2017. Influence of temperature and relative humidity on the insecticidal efficacy of Metarhizium anisopliae against Larvae of Ephestia kuehniella (Lepidoptera: Pyralidae) on Wheat. J Insect Sci. 17(1). doi:10.1093/jisesa/iew107.
  • Baker DK, Rice SJ, Leemon DM, James PJ. 2018. Horizontal transmission of Metarhizium anisopliae (Hypocreales: Clavicipitacea) and the effects of infection on oviposition rate in laboratory populations of Musca domestica (Diptera: Muscidae). Pest Manag Sci. 74(4):987–991. doi:10.1002/ps.4799.
  • Barelli L, Padilla-Guerrero IE, Bidochka MJ. 2011. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biol. 115(11):1174–1185. doi:10.1016/j.funbio.2011.08.003.
  • Batta YA. 2003. Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes). Crop Prot. 22(2):415–422. doi:10.1016/S0261-2194(02)00200-4.
  • Beys-Da-Silva WO, Lucélia S, Markus B, Guimarães JA, Augusto S, Vainstein MH. 2013. Susceptibility of Loxosceles sp. to the arthropod pathogenic fungus Metarhizium anisopliae: potential biocontrol of the brown spider. Trans R Soc Trop Med Hyg. 107:59–61. doi:10.1093/trstmh/trs006.
  • Beys-da-Silva WO, Rosa RL, Berger M, Coutinho-Rodrigues CJB, Vainstein MH, Schrank A, et al. 2020. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Parasitol. 208:107812. doi:10.1016/j.exppara.2019.107812.
  • Bilal H, Hassan SA, Khan IA. 2012. Isolation and efficacy of entomopathogenic fungus (Metarhizium anisopliae) for the control of Aedes albopictus Skuse larvae: suspected dengue vector in Pakistan. Asian Pac J Trop Bio. 2(4):298–300. doi:10.1016/S2221-1691(12)60026-4.
  • Bischoff JF, Rehner SA, Humber RA. 2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia. 101(4):512–530. doi:10.3852/07-202.
  • Brito ES, de Paula AR, Vieira LP, Dolinski C, Samuels RI. 2008. Combining vegetable oil and sub-lethal concentrations of Imidacloprid with Beauveria bassiana and Metarhizium anisopliae against adult guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Biocontrol Sci Techn. 18:665–673. doi:10.1080/09583150802195965.
  • Bukhari T, Middelman A, Koenraadt CJ, Takken W, Knols BG. 2010. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi. Malaria J. 9(1):1–15. doi:10.1186/1475-2875-9-22.
  • Bukhari T, Takken W, Koenraadt CJ. 2011. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit Vectors. 4:23. doi:10.1186/1756-3305-4-23.
  • Butt TM, Coates CJ, Dubovskiy I, Ratcliffe NA. 2016. Entomopathogenic fungi: new insights into host-pathogen interactions. Adv Genet. 94:307. doi:10.1016/bs.adgen.2016.01.006.
  • Butt TM, Greenfield BPJ, Greig C, Maffeis TGG, Taylor JWD, Piasecka J, Dudley E, Abdulla A, Dubovskiy IM, Garrido-Jurado I, et al. 2013. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. Plos One. 8(12):e81686. doi:10.1371/journal.pone.0081686.
  • Camargo MG, Golo PS, Angelo IC, Perinotto WM, Sá FA, Quinelato S, et al. 2012. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Vet Parasitol. 188(1-2):140–147. doi:10.1016/j.vetpar.2012.03.012.
  • Carneiro LOMP, Vieira TP, Dini AF, Luiz dAW, Tinti DON. 2015. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis. Genet Mol Biol. 38(1):86–92. doi:10.1590/S1415-475738138120140236.
  • Cassiano JA, Destéfano RHR, Baracho MS, Nääs IA, Salgado DD. 2008. Analysis of entomogenous fungus Metarhizium anisopliae to control Alphitobius diaperinus in poultry buildings. BJVRAS. 45(5):348–353.
  • Chao Y, Wang M, Dai W, Dong F, Wang X, Zhang F. 2020. Synergism between Hydramethylnon and Metarhizium anisopliae and Their Influence on the Gut Microbiome of Blattella germanica (L.). Insects. 11(8):538. doi:10.3390/insects11080538.
  • Charnley AK. 2003. Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv Bot Res. 40:241–321. doi:10.1016/S0065-2296(05)40006-3.
  • Chen HC, Chou CK, Sun CM, Yeh SF. 1997. Suppressive effects of destruxin B on hepatitis B virus surface antigen gene expression in human hepatoma cells. Antivir Res. 34(3):137–144. doi:10.1016/S0166-3542(97)01031-0.
  • Cheng Y, Liu T, Zhao Y, Geng W, Chen L, Liu J. 2016. Evaluation of pathogenicity of the fungi Metarhizium anisopliae and Beauveria bassiana in hazelnut weevil (Curculio nucum L., Coleoptera, Curculionidae) larvae. Indian J Microbiol. 56(4):405–410. doi:10.1007/s12088-016-0614-4.
  • Cherry AJ, Abalo P, Hell K. 2005. A laboratory assessment of the potential of different strains of the entomopathogenic fungi beauveria bassiana (balsamo) vuillemin and metarhizium anisopliae (metschnikoff) to control callosobruchus maculatus (F.) (coleoptera: bruchidae) in stored cowpea. J Stored Prod Res. 41(3):295–309. doi:10.1016/j.jspr.2004.04.002.
  • Chiuo WC, Hou RF. 1993. Infection of the Asian corn borer, Ostrinia furnacalis Guenee (Lep., Pyralidae), with entomopathogens under screen house conditions. J Appl Entomol. 115:246–253. doi:10.1111/j.1439-0418.1993.tb00386.x.
  • Choi CJ, Lee JY, Woo RM, Shin TY, Gwak WS, Woo SD. 2020. An effective entomopathogenic fungus Metarhizium anisopliae for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults. J Asia-Pac Entomol. 23(2):585–590. doi:10.1016/j.aspen.2020.04.007.
  • Contreras J, Mendoza JE, Martínez-Aguirre MR, García-Vidal L, Izquierdo J, Bielza P. 2014. Efficacy of enthomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol. 107(1):121–124. https://pubmed.ncbi.nlm.nih.gov/24665693.
  • Damalas CA, Koutroubas SD. 2018. Current status and recent developments in biopesticide use. Agriculture. 8(1):1. doi:10.3390/agriculture8010013.
  • Daoust RA, Roberts DW. 1982. Virulence of natural and insect-passaged strains of Metarhizium anisopliae to mosquito larvae. J Invertebr Pathol. 40(1):107–117. doi:10.1016/0022-2011(82)90042-8.
  • Deng S, Huang Q, Wei H, Zhou L, Yao L, Li D, et al. 2019a. Beauveria bassiana infection reduces the vectorial capacity of Aedes albopictus for the Zika virus. J Pest Sci. 92(2):781–789. doi:10.1007/s10340-019-01081-0.
  • Deng SQ, Zou WH, Li DL, Chen JT, Huang Q, Zhou LJ, et al. 2019b. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Negl Trop Dis. 13(7):e0007590. doi:10.1371/journal.pntd.0007590. (in Chinese).
  • De Oliveira DGP, Lopes RB, Rezende JM, Delalibera Jr I. 2018. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. J Invertebr Pathol. 151:151–157.
  • Destéfano RHR, Destéfano SAL, Messias CL. 2004. Detection of Metarhizium anisopliae var. anisopliae within infected sugarcane borer Diatraea saccharalis (Lepidoptera, Pyralidae) using specific primers. Genet Mol Biol. 27:245–252. doi:10.1590/S1415-47572004000200020.
  • Dhar R, Dawar H, Garg S, Basir SF, Talwar GP. 1996. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of anopheles stephensi and An. culicifacies (diptera: culicidae). J Med Entomol. 33(2):195–201. doi:10.1093/jmedent/33.2.195.
  • Dong C, Zhang J, Huang H, Chen W, Hu Y. 2009. Pathogenicity of a new China variety of Metarhizium anisopliae (M. anisopliae var. Dcjhyium) to subterranean termite Odontotermes formosanus. Microbiol Res. 164(1):27–35. doi:10.1016/j.micres.2006.11.009.
  • Ekesi S, Egwurube EA, Akpa AD, Onu I. 2001. Laboratory evaluation of the entomopathogenic fungus, Metarhizium anisopliae for the control of the groundnut bruchid, Caryedon serratus on groundnut. J Stored Prod Res. 37(4):313–321. https://pubmed.ncbi.nlm.nih.gov/11463393.
  • El Husseini MM. 2019. Efficacy of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.), against larvae of the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), under laboratory conditions. Egypt J Biol Pest Co. 29:1–3. doi: 10.1186/s41938-019-0156-2.
  • Elliot SL, Thomas BMB. 2002. Host-Pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc Biol Sci. 269(1500):1599–1607. doi:10.1098/rspb.2002.2067.
  • Fang W, Pava-Ripoll M, Wang S, Leger RS. 2009. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genet Biol. 46(3):277–285. doi:10.1016/j.fgb.2008.12.001.
  • Fang W, Pei Y, Bidochka MJ. 2007. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology. 153(4):1017–1025. doi:10.1099/mic.0.2006/002105-0.
  • Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, Leger RJS. 2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 331(6020):1074–1077. doi:10.1126/science.1199115.
  • Fernández-Bravo M, Gschwend F, Mayerhofer J, Hug A, Widmer F, Enkerli J. 2021. Land-Use type drives soil population structures of the entomopathogenic fungal genus metarhizium. Microorganisms. 9(7). doi:10.3390/microorganisms9071380.
  • Fite T, Tefera T, Negeri M, Damte T, Sori W. 2020. Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner)(Lepidoptera: Noctuidae) under laboratory and field conditions. Biocontrol Sci Techn. 30:278–295. doi:10.1080/09583157.2019.1707481.
  • Freimoser FM, Hu G, Leger RJS. 2005. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology. 151(2):361. doi:10.1099/mic.0.27560-0.
  • Fu R, Zhou L, Feng K, Lu X, Luo J, Tang F. 2020. Effects of Serratia marcescens (SM1) and its interaction with common biocontrol agents on the termite, Odontotermes formosanus (Shiraki). J Forestry Res. 1–5. doi:10.1007/s11676-020-01122-w.
  • Gabarty A, Salem HM, Fouda MA, Abas AA, Ibrahim AA. 2014. Pathogencity induced by the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae in agrotis ipsilon (hufn.). J Radiat Res Appl Sci. 7(1):95–100. doi:10.1016/j.jrras.2013.12.004.
  • Gao Q, Jin K, Ying S-H, Zhang Y, Xiao G, Shang Y, et al. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Plos Genet. 7(1):e1001264. doi:10.1371/journal.pgen.1001264.
  • Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, Russell TL, Adeleke MA, de Luna-Santillana EdJ, et al. 2013. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae. Plos Negl Trop Dis. 7(3):e2013–e2013. doi:10.1371/journal.pntd.0002013.
  • Gašić S, Tanović B. 2013. Biopesticide formulations, possibility of application and future trends. Pestic Fitomed. 28(2):97–102. doi:10.2298/PIF1302097G.
  • Gopal M, Gupta A, Thomas GV. 2006. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites. Bioresource Technol. 97(15):1801–1806. doi:10.1016/j.biortech.2005.09.005.
  • Greenfield BPJ, Lord AM, Dudley E, Butt TM. 2014. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. Roy Soc Open Sci. 1(2):140193. doi:10.1098/rsos.140193.
  • Guogui C. 2003. Screening of the superior strains of Beauveria bassiana of pantana phyllostachysae and practical application. Scientia Silvae Sinicae. 39(2):102–108. (in Chinese).
  • Gupta RC, Miller Mukherjee IR, Malik JK, et al. 2019. Chapter 26 - insecticides. In: R.C. Guptas, editor. Biomarkers in toxicology (second edition). Pittsburgh: Academic Press; p. 455–475.
  • Hänel H. 1982. The life cycle of the insect pathogenic fungus Metarhizium anisopliae in the termite Nasutitermes exitiosus. Mycopathologia. 80(3):137–145. doi:10.1007/BF00437576.
  • Hino M, Nakayama O, Tsurumi Y, Adachi K, Shibata T, Terano H, Imanaka H. 1985. Studies of an immunomodulator, swainsonine. I. enhancement of immune response by swainsonine in vitro. J Antibiot. 38:926–935. doi:10.7164/antibiotics.38.926.
  • Hong M, Peng G, Keyhani NO, Xia Y. 2017. Application of the entomogenous fungus, Metarhizium anisopliae, for leafroller (Cnaphalocrocis medinalis) control and its effect on rice phyllosphere microbial diversity. Appl Microbiol Biot. 101:6793–6807. doi:10.1007/s00253-017-8390-6.
  • Hsiao YM, Ko JL. 2001. Determination of destruxins, cyclic peptide toxins, produced by different strains of Metarhizium anisopliae and their mutants induced by ethyl methane sulfonate and ultraviolet using HPLC method. Toxicon. 39:837–841. doi:10.1016/S0041-0101(00)00217-8.
  • Hu QB, Ren SX, Wu JH, Chang JM, Musa PD. 2006. Investigation of destruxin A and B from 80 Metarhizium strains in China, and the optimization of cultural conditions for the strain MaQ10. Toxicon. 48(5):491–498. doi:10.1016/j.toxicon.2006.06.018.
  • Hui Q, Zhen-Qiang WU, Shi-Zhong L. 2004. Metarhizium anisopliae and its mechanism for killing insects. Pesticides. 08:4. doi:10.16820/j.cnki.1006-0413.2004.08.002.
  • Hunter DM, Milner RJ, Spurgin PA. 2001. Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull Entomol Res. 91(2):93–99. doi:10.1079/BER200080.
  • Inyang EN, McCartney HA, Oyejola B, Ibrahim L, Pye BJ, Archer SA, et al. 2000. Effect of formulation, application and rain on the persistence of the entomogenous fungus Metarhizium anisopliae on oilseed rape. Mycol Res. 104(6):653–661. doi:10.1017/S0953756200002641.
  • Kaaya GP, Hedimbi M. 2012. The use of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, as bio-pesticides for tick control. Int J Agr Sci. 2:245–250.
  • Kawasaki L, Aguirre J. 2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol. 183(4):1434–1440. doi: 10.1128/jb.183.4.1434-1440.2001.
  • Keppanan R, Sivaperumal S, Aguila LCR, Hussain M, Bamisile BS, Dash CK, Wang L. 2018. Isolation and characterization of Metarhizium anisopliae TK29 and its mycoinsecticide effects against subterranean termite Coptotermes formosanus. Microb Pathog. 123:52–59. doi:10.1016/j.micpath.2018.06.040.
  • Keppanan R, Sivaperumal S, Kanta DC, Akutse KS, Wang L. 2017. Molecular docking of protease from Metarhizium anisopliae and their toxic effect against model insect Galleria mellonella. Pestic Biochem Phys. 138:8–14. doi:10.1016/j.pestbp.2017.01.013.
  • Kim JC, Lee SJ, Kim S, Lee MR, Baek S, Park SE, Kim JS. 2020. Management of pine wilt disease vectoring Monochamus alternatus adults using spray and soil application of Metarhizium anisopliae JEF isolates. J Asia-Pac Entomol. 23:224–233. doi:10.1016/j.aspen.2019.12.012.
  • Kin PK, Moslim R, Azmi WA, Kamarudin N, Ali SRA. 2017. Genetic variation of entomopathogenic fungi, Metarhizium anisopliae and Isaria amoenerosea and their pathogenicity against subterranean termite, Coptotermes curvignathus. J Oil Palm Res. 29:35–46. doi:10.21894/jopr.2017.2901.04.
  • Kirkland BH, Westwood GS, Keyhani NO. 2004. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Med Entomol. 41(4):705–711. doi:10.1603/0022-2585-41.4.705.
  • Kirubakaran SA, Sathish-Narayanan S, Revathi K, Chandrasekaran R, Senthil-Nathan S. 2014. Effect of oil-formulated Metarhizium anisopliae and Beauveria bassiana against the rice leaffolder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Archiv Fr Pflanzenschutz. 47(8):977–992. doi:10.1080/03235408.2013.828388.
  • Lawo NC, Mahon RJ, Milner RJ, Sarmah BK, Higgins TJV, Romeis J. 2008. Effectiveness of Bacillus thuringiensis-transgenic Chickpeas and the Entomopathogenic Fungus Metarhizium anisopliae in Controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol. 74(14):4381–4389. doi:10.1128/AEM.00484-08.
  • Lee MK, Miles P, Chen JS. 2006. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun. 339(4):1043–1047. doi:10.1016/j.bbrc.2005.11.112.
  • Leemon DM, Turner L, Jonsson NN. 2008. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Vet Parasitol. 156(3-4):248–260. doi:10.1016/j.vetpar.2008.06.007.
  • Leger RJS, Joshi L, Roberts DW. 1998. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol. 64(2):709–713. doi: 10.1109/35.883500.
  • Li J, Xie J, Zeng D, Xia Y, Peng G. 2021. Effective control of Frankliniella occidentalis by Metarhizium anisopliae CQMa421 under field conditions. J Pest Sci. 94(1):111–117. doi:10.1007/s10340-020-01223-9.
  • Lin L, Fang W, Liao X, Wang F, Wei D, St Leger RJ. 2011. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PloS One. 6(12):e28984. doi:10.1371/journal.pone.0028984.
  • Liu Y, Cheng Y, Li H, Nong X, Luke B. 2019. Virulence of Metarhizium anisopliae against 3rd instar nymphs of Locusta migratoria manilensis under different temperatures. Chin J Biol Cont. 35(4):642–647. (in Chinese).
  • Lopes RB, Alves SB. 2011. Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies. Neotrop Entomol. 40(3):368–374. doi: 10.1590/S1519-566X2011000300010.
  • Lovett B, Bilgo E, Diabate A, St Leger R. 2019a. A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi. Pest Manag Sci. 75(9):2316–2324. doi:10.1002/ps.5385.
  • Lovett B, Bilgo E, Millogo SA, Ouattarra AK, Sare I, Gnambani EJ, et al. 2019b. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science. 364(6443):894–897. doi: 10.1126/science.aaw8737.
  • Lovett B, St Leger RJ. 2015. Stress is the rule rather than the exception for Metarhizium. Curr Genet. 61:253–261. doi:10.1007/s00294-014-0447-9.
  • Lovett B, St Leger RJ. 2018. Genetically engineering better fungal biopesticides. Pest Manag Sci. 74(4):781–789. doi:10.1002/ps.4734.
  • Luz C, Tigano MS, Silva IG, Cordeiro CM, Aljanabi SM. 1998. Selection of Beauveria bassiana and Metarhizium anisopliae isolates to control Triatoma infestans. Mem Inst Oswaldo Cruz. 93(6):839–846. doi: 10.1590/s0074-02761998000600026.
  • Lwetoijera DW, Sumaye RD, Madumla EP, Kavishe DR, Mnyone LL, Russell TL, et al. 2010. An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis. Parasite Vector. 3(1):18. doi:10.1186/1756-3305-3-18.
  • Ment D, Gindin G, Rot A, Soroker V, Glazer I, Barel S, Samish M. 2010a. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl Environ Microbiol. 76:3521–3528. doi: 10.1128/aem.02596-09.
  • Ment D, Gindin G, Soroker V, Glazer I, Rot A, Samish M. 2010b. Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. J Invertebr Pathol. 103(2):132–139. doi:10.1016/j.jip.2009.12.010.
  • Michalaki MP, Athanassiou CG, Kavallieratos NG, Batta YA, Balotis GN. 2006. Effectiveness of Metarhizium anisopliae (Metschinkoff) Sorokin applied alone or in combination with diatomaceous earth against Tribolium confusum Du Val larvae: Influence of temperature, relative humidity and type of commodity. Crop Prot. 25(5):418–425. doi:10.1016/j.cropro.2005.07.003.
  • Mitaka Y, Kobayashi K, Matsuura K. 2017. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. Plos One. 12(4):e0175417. doi:10.1371/journal.pone.0175417.
  • Mkiga AM, Mohamed SA, du Plessis H, Khamis FM, Akutse KS, Ekesi S. 2020. Metarhizium anisopliae and Beauveria bassiana: pathogenicity, horizontal transmission, and their effects on reproductive potential of Thaumatotibia leucotreta (Lepidoptera: Tortricidae). J Econ Entomol. 113(2):660–668. doi:10.1093/jee/toz342.
  • Mohanty SS, Raghavendra K, Mittal PK, Dash AP. 2008. Efficacy of culture filtrates of Metarhizium anisopliae against larvae of Anopheles stephensi and Culex quinquefasciatus. J Ind Microbiol Biot. 35(10):1199–1202. doi:10.1007/s10295-008-0434-6.
  • Moino A, Alves SB, Lopes RB, Neves PMOJ, Pereira RM, Vieira SA. 2002. External development of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in the subterranean termite Heterotermes tenuis. Sci Agr. 59(2):267–273.
  • Molaei G, Little EA, Stafford IIIKC, Gaff H. 2020. A seven-legged tick: report of a morphological anomaly in Ixodes scapularis (Acari: Ixodidae) biting a human host from the Northeastern United States. Ticks Tick-Borne Dis. 11(1):101304. doi:10.1016/j.ttbdis.2019.101304.
  • Moraes CKD, Schrank A, Vainstein MH. 2003. Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr Microbiol. 46(3):205–210. doi:10.1007/s00284-002-3863-x.
  • Morales Hernandez CE, Padilla Guerrero IE, Gonzalez Hernandez GA, et al. 2010. Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Appl Microbiol Biotechnol. 87(3):1033–1044. doi:10.1007/s00253-010-2517-3.
  • Muniz ER, Paixão FR, Barreto LP, Luz C, Arruda W, Angelo IC, Fernandes ÉK. 2020. Efficacy of Metarhizium anisopliae conidia in oil-in-water emulsion against the tick Rhipicephalus microplus under heat and dry conditions. Biocontrol. 65(3):339–351. doi:10.1007/s10526-020-10002-5.
  • Mwangi EN, Hassanali A, Essuman S, Myandat E, Moreka L, Kimondo M. 1995. Repellent and acaricidal properties of Ocimum suave against Rhipicephalus appendiculatus ticks. Exp Appl Acarol. 19(1):11–18. doi: 10.1007/bf00051933.
  • Nourrisson C, Dupont D, Lavergne RA, Dorin J, Forouzanfar F, Denis J, et al. 2017. Species of Metarhizium anisopliae complex implicated in human infections: retrospective sequencing study. Clin Microbiol Infec. 23(12):994–999. doi:10.1016/j.cmi.2017.05.001.
  • Ojeda-Chi MM, Rodriguez-Vivas RI, Galindo-Velasco E, Lezama-Gutiérrrez R. 2010. Laboratory and field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Vet Parasitol. 170:348–354. doi:10.1016/j.vetpar.2010.02.022.
  • Okumu FO, Knols BG, Fillinger U. 2007. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malaria J. 6(1):1–8. doi:10.1186/1475-2875-6-63.
  • Onsongo SK, Gichimu BM, Akutse KS, Dubois T, Mohamed SA. 2019. Performance of Three Isolates of Metarhizium anisopliae and Their Virulence against Zeugodacus cucurbitae under Different Temperature Regimes, with Global Extrapolation of Their Efficiency. Insects. 10(9):270. doi:10.3390/insects10090270.
  • Opisa S, du Plessis H, Akutse KS, Fiaboe KKM, Ekesi S. 2019. Horizontal transmission of Metarhizium anisopliae between Spoladea recurvalis (Lepidoptera: Crambidae) adults and compatibility of the fungus with the attractant phenylacetaldehyde. Microb Pathogenesis. 131:197–204. doi:10.1016/j.micpath.2019.04.010.
  • Oreste M, Bubici G, Poliseno M, Tarasco E. 2016. Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system. J Pest Sci. 89(1):153–160. doi:10.1007/s10340-015-0660-4.
  • Ozdemir IO, Tuncer C, Erper I, Kushiyev R. 2020. Efficacy of the entomopathogenic fungi; Beauveria bassiana and Metarhizium anisopliae against the cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Chrysomelidae: Bruchinae). Egypt J Biol Pest Co. 30(1):1–5. doi: 10.1186/s41938-020-00219-y.
  • Parola P, Raoult D. 2001. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis. 32(6):897–928. doi:10.1086/319347.
  • Paula AR, Ribeiro A, Lemos FJA, Silva CP, Samuels RI. 2019. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasite Vector. 12. doi:10.1186/s13071-019-3415-x.
  • Pava-Ripoll M, Posada FJ, Momen B, Wang C, et al. 2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol. 99(2):220–226. doi:10.1016/j.jip.2008.05.004.
  • Pedras MS, Irina Zaharia L, Ward DE. 2002. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry. 59(6):579–596. doi: 10.1016/s0031-9422(02)00016-x.
  • Pedrini N, Crespo R, Juárez MP. 2007. Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol. 146(1-2):124–137. doi:10.1016/j.cbpc.2006.08.003.
  • Peng G, Wang Z, Yin Y, Zeng D, Xia Y. 2008. Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot. 27(9):1244–1250. doi:10.1016/j.cropro.2008.03.007.
  • Pereira RM, Roberts DW. 1991. Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. J Econ Entomol. 84:1657–1661.
  • Pikkheng H, Bong CFJ, Jugah K, Rajan A. 2009. Evaluation of Metarhizium anisopliae var. anisopliae (Deuteromycotina: Hyphomycete) Isolates and their Effects on Subterranean Termite Coptotermes curvignathus (Isoptera: Rhinotermitidae). Am J Agric Biol Sci. 4(4):289–297. doi:10.3844/ajabssp.2009.289.297.
  • Pulido JM, Guerrero IP, Martínez IdJMa, Valadez BC, Guzman JCT, Solis ES, et al. 2011. Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiol Res. 166(6):494–507. doi:10.1016/j.micres.2010.10.002.
  • Rangel DEN, Bignayan HG, Golez HG, Keyser CA, Evans EW, Roberts DW. 2021. Virulence of the insect-pathogenic fungi Metarhizium spp. to Mormon crickets, Anabrus simplex (Orthoptera: Tettigoniidae). B Entomol Res. 1–8. doi:10.1017/S0007485321000663.
  • Rangel DEN, Piedrabuena AE, Roitman I, Messias CL. 2020. Laboratory and field studies for the control of Chagas disease vectors using the fungus Metarhizium anisopliae. Arch Insect Biochem. 105(4):e21745. doi:10.1002/arch.21745.
  • Rath AC. 2000. The use of entomopathogenic fungi for control of termites. Biocontrol Sci Techn. 10(5):563–581. doi:10.1080/095831500750016370.
  • Rehner SA, Kepler RM. 2017. Species limits, phylogeography and reproductive mode in the Metarhizium anisopliae complex. J Invertebr Pathol. 148:60–66. doi:10.1016/j.jip.2017.05.008.
  • Reis RC, Fernandes EK, Bittencourt VR. 2008. Fungal formulations to control Rhipicephalus sanguineus engorged females. Ann Ny Acad Sci. 1149(1):239–241. doi:10.1196/annals.1428.030.
  • Remadevi OK, Sasidharan TO, Balachander M, Bai NS. 2010. Metarhizium based mycoinsecticides for forest pest management. J Biopestic. 3(2):470–473.
  • Ren Q, Sun M, Guan G, Liu Z, Chen Z, Liu A, et al. 2014. Susceptibility of the tick Haemaphysalis qinghaiensis to isolates of the fungus Metarhizium anisopliae in China. Exp Appl Acarol. 64(2):253–258. doi:10.1007/s10493-014-9790-2.
  • Riba G, Bouvier-Fourcade I, Caudal A. 1986a. Isoenzymes polymorphism in Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) entomogenous fungi. Mycopathologia. 96(3):161–169. doi:10.1007/BF00437383.
  • Riba G, Keita A, Soares GG, Ferron P. 1986b. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae. J Am Mosq Control Assoc. 2(4):469–473. doi:10.2307/3495228.
  • Rice SJ, Baker DK, Leemon DM. 2019. Development of mycoinsecticide formulations with Beauveria bassiana and Metarhizium anisopliae for the control of lesser mealworm, Alphitobius diaperinus, in chicken broiler houses. Biocontrol. 64(5):489–500. doi:10.1007/s10526-019-09951-3.
  • Rice SJ, Baker DK, Mayer DG, Leemon DM. 2020. Mycoinsecticide formulations of Beauveria bassiana and Metarhizium anisopliae reduce populations of lesser mealworm, Alphitobius diaperinus, in chicken-broiler houses. Bioll Control. 144:104234. doi:10.1016/j.biocontrol.2020.104234.
  • Roberts DW, Leger RJS. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol. 54:1–70.
  • Rodrigues J, Borges PR, Fernandes ÉKK, Luz C. 2019. Activity of additives and their effect in formulations of metarhizium anisopliae s.l. IP 46 against aedes aegypti adults and on post mortem conidiogenesis. Acta trop. 193:192–198. doi:10.1016/j.actatropica.2019.03.002.
  • Rohde C, Alves LF, Neves PM, Alves SB, Da Silva ER, De Almeida JE. 2006. Selection of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. isolates against Alphitobius diaperinus (Panzer)(Coleoptera: Tenebrionidae). Neotrop Entomol. 35(2):231–240. doi: 10.1590/s1519-566(2006000200012.
  • Rustiguel CB, Fernández-Bravo M, GuimarãEs LHS, Quesada-Moraga E. 2018. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Can J Microbiol. 64(3):191–200. doi:10.1139/cjm-2017-0517.
  • Saeed N, Wakil W, Farooq M, Shakeel M, Arain MS, Shakeel Q. 2020. Evaluating the combination of Metarhizium anisopliae and an enhanced form of diatomaceous earth (Grain-Guard) for the environmentally friendly control of stored grain pests. Environ Monit Assess. 192(4):210. doi:10.1007/s10661-020-8189-2.
  • Samson RA, Evans HC, Latgé J-P. 1988. Fungal pathogenesis. In: R.A. Samson, H.C. Evans, J.-P. Latgé, editor. Atlas of entomopathogenic fungi. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 128–139.
  • San AKM, Mun HS. 2017. Mode of infection of metarhizium spp. fungus and their potential as biological control agents. J Fungi. 3(2):30. doi:10.3390/jof3020030.
  • Sandhu SS, Shukla H, Aharwal RP, Kumar S, Shukla S. 2017. Efficacy of entomopathogenic fungi as green pesticides: current and future prospects. In: D.G. Panpatte, Y.K. Jhala, R.V. Vyas, H.N. Shelat, editor. Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Singapore: Springer Singapore; p. 327–349.
  • Santi L, Beys da Silva WO, Berger M, Guimarães JA, Schrank A, Vainstein MH. 2010a. Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon. 55(4):874–880. doi:10.1016/j.toxicon.2009.12.012.
  • Santi L, e Silva LAD, da Silva WOB, Corrêa APF, Rangel DEN, Carlini CR, Vainstein MH. 2011. Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus. World J Microb Biot. 27(10):2297–2303. doi:10.1007/s11274-011-0695-5.
  • Santi L, Silva WOB, Pinto ANFM, Schrank A, Vainstein MH. 2010b. Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biol. 114(4):312–319. doi:10.1016/j.funbio.2010.01.006.
  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 3(3):430–439.
  • Sbaraini N, Hu J, Roux I, Phan CS, Motta H, Rezaee H, Schrank A, Chooi YH, Staats CC. 2021. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Fungal Genet Biol. 152:103568. doi:10.1016/j.fgb.2021.103568.
  • Scanlan JC, Grant WE, Hunter DM, Milner RJ. 2001. Habitat and environmental factors influencing the control of migratory locusts (Locusta migratoria) with an entomopathogenic fungus (Metarhizium anisopliae). Ecol Modell. 136(2-3):223–236. doi:10.1016/S0304-3800(00)00424-5.
  • Scholte EJ, Knols BG, Takken W. 2006. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol. 91(1):43–49. doi:10.1016/j.jip.2005.10.006.
  • Scholte EJ, Njiru BN, Smallegange RC, Takken W, Knols BG. 2003. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar J. 2:29. doi:10.1186/1475-2875-2-29.
  • Scholte EJ, Takken W, Knols BG. 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop. 102(3):151–158. doi:10.1016/j.actatropica.2007.04.011.
  • Schrank A, Vainstein MH. 2010. Metarhizium anisopliae enzymes and toxins. Toxicon. 56(7):1267–1274. doi:10.1016/j.toxicon.2010.03.008.
  • Senthil-Nathan S. 2015. A review of biopesticides and their mode of action against insect pests. In: P. Thangavel, G. Sridevi, editor. Environmental sustainability: role of green technologies. New Delhi: Springer India; p. 49–63.
  • Seye F, Ndiaye M, Faye O, Afoutou JM. 2012. Evaluation of entomopathogenic fungus Metarhizium anisopliae formulated with suneem (neem oil) against Anopheles gambiae sl and Culex quinquefasciatus adults. Malaria Chemotherapy Cont Elim. 1(1-6).
  • Seyoum E, Bateman RP, Charnley AK. 2002. The effect of Metarhizium anisopliae var acridum on haemolymph energy reserves and flight capability in the desert locust, Schistocerca gregaria. J Appl Entomol. 126(2-3):119–124. doi:10.1046/j.1439-0418.2002.00609.x.
  • Sharififard M, Mossadegh M, Vazirianzadeh B, Zarei-Mahmoudabadi A. 2011. Interactions between Entomopathogenic Fungus, Metarhizium anisopliae and Sublethal Doses of Spinosad for Control of House Fly, Musca domestica. Iran J Arthropod Borne Dis. 5(1):28–36. doi:10.1042/BSE0510193.
  • Shimizu S, Yamaji M. 2003. Effect of density of the termite, Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae), on the susceptibilities to Metarhizium anisopliae. Appl Entomol Zool. 38(1):125–130. doi:10.1303/aez.2003.125.
  • Shoukat RF, Hassan B, Shakeel M, Zafar J, Li S, Freed S, Xu X, Jin F. 2020. Pathogenicity and transgenerational effects of Metarhizium anisopliae on the demographic parameters of Aedes albopictus (Culicidae: Diptera).”. J Med Entomol. 57(3):677–685.
  • Sim KL, Perry D. 1997. Analysis of swainsonine and its early metabolic precursors in cultures of Metarhizium anisopliae. Glycoconjugate J. 14(5):661–668. doi:10.1023/A:1018505130422.
  • Sree KS, Padmaja V, Murthy YL. 2008. Insecticidal activity of destruxin, a mycotoxin fromMetarhizium anisopliae (hypocreales), againstSpodoptera litura (lepidoptera: noctuidae) larval stages. Pest Manag Sci. doi:10.1002/ps.1480.
  • St. Leger RJ, Charnley AK, Cooper RM. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J Invertebr Pathol. 48(1):85–95. doi:10.1016/0022-2011(86)90146-1.
  • Stleger RJ, Charnley AK, Cooper RM. 1987. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys. 253(1):221–232. doi:10.1016/0003-9861(87)90655-2.
  • Tang J, Liu X, Ding Y, Jiang W, Xie J. 2019. Evaluation of Metarhizium anisopliae for rice planthopper control and its synergy with selected insecticides. Crop Prot. 121:132–138. doi:10.1016/j.cropro.2019.04.002.
  • Tefera T, Pringle KL. 2003. Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. J Invertebr Pathol. 84(3):220–225. doi:10.1016/j.jip.2003.11.001.
  • Toledo AV, de Remes Lenicov AMM, López Lastra CC. 2010. Histopathology caused by the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, in the adult planthopper, Peregrinus maidis, a maize virus vector. J Insect Sci. 10:35. doi:10.1673/031.010.3501.
  • Toledo-Hernández RA, Toledo J, Sánchez D. 2018. Effect of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) on food consumption and mortality in the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae). Int J Trop Insect Sci. 38(3):254–260.
  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, et al. 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2(4):149–159. doi:10.1016/j.funeco.2009.05.001.
  • Vivekanandhan P, Swathy K, Kalaimurugan D, Ramachandran M, Kweka EJ. 2020. Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms. PLOS ONE. 15(5):e0232172. doi:10.1371/journal.pone.0232172.
  • Walia S, Saha S, Tripathi V, Sharma KK. 2017. Phytochemical biopesticides: some recent developments. Phytochem Rev. 16(5):989–1007. doi:10.1007/s11101-017-9512-6.
  • Walker HL, Connick WJ. 1983. Sodium alginate for production and formulation of Mycoherbicides. Weed Sci. 31:333–338.
  • Wang C, St Leger RJ. 2007a. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol. 25(12):1455–1456. doi:10.1038/nbt1357.
  • Wang C, St Leger RJ. 2007b. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell. 6:808–816. doi:10.1128/EC.00409-06.
  • Wang C, St. Leger RJ. 2007c. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem. 282(29):21110–21115. doi:10.1074/jbc.M609592200.
  • Wassermann M, Selzer P, Steidle JLM, Mackenstedt U. 2016. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks Tick Borne Dis. 7(5):768–771. doi:10.1016/j.ttbdis.2016.03.010.
  • World Health Organization. 2017. Global vector control response 2017–2030. https://www.who.int/vector-control/publications/global-control-response/en/ [Accessed May 1, 2022].
  • World Health Organization. 2020. Malaria, https://www.who.int/health-topics/malaria#tab=tab_1 [Accessed May 1, 2022].
  • Wright MS, Raina AK, Lax AR. 2005. A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. J Econ Entomol. 98(5):1451–1458. doi: 10.1603/0022-0493-98.5.1451.
  • Xia Y, Dean P, Judge AJ, Gillespie JP, Clarkson JM, Charnley AK. 2000. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J Insect Physiol. 46(9):1249–1257. doi: 10.1016/s0022-1910(00)00045-7.
  • Yaginuma K. 1990. Detection of fungi pathogenic to peach fruit moth, Carposina niponensis Walsingham from soil. Bull Fruit Tree Res Stn. 17:77–89.
  • Yanagawa A, Shimizu S. 2007. Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl. 52(1):75–85. doi:10.1007/s10526-006-9020-x.
  • Zafar J, Shoukat RF, Zhang Y, Freed S, Xu X, Jin F. 2020. Metarhizium anisopliae Challenges Immunity and Demography of Plutella xylostella. Insects. 11(10):694. doi:10.3390/insects11100694.
  • Zhang F, Sun XX, Zhang XC, Zhang S, Lu J, Xia YM, et al. 2018. The interactions between gut microbiota and entomopathogenic fungi: a potential approach for biological control of Blattella germanica (L.). Pest Manag Sci. 74(2):438. doi:10.1002/ps.4726.
  • Zhang L, Ying HS, Feng MG. 2014. Assessment of oral virulence against Spodoptera litura, acquired by a previously non-pathogenic Metarhizium anisopliae isolate, following integration of a midgut-specific insecticidal toxin. Biol Control. 79:8–15. doi:10.1016/j.biocontrol.2014.08.001. (in Chinese).
  • Zhang S, Lizhen F, Yun J. 2002. Changes of some biochemical estimates in the hemolymph and body wall of Dendrolimus punctatus infected by Metarhizium anisopliae. Entomol Knowledg. 39(4):297–300. doi: 10.1007/s11769-002-0041-9.
  • Zhioua E, Browning M, Johnson PW, Ginsberg HS, LeBrun RA. 1997. Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae). J Parasitol. 83(5):815–818. doi:10.2307/3284273.
  • Zober MH. 1995. Metarhizium anisopliae, a fungal pathogen of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Mycologia. 87(3):354–359.