709
Views
2
CrossRef citations to date
0
Altmetric
Cancer Biology, Biochemistry, Cell and Molecular Biology

Progress in the mechanism of mitochondrial dysfunction in septic cardiomyopathy

ORCID Icon, , &
Pages 1276-1289 | Received 17 Jun 2021, Accepted 31 Oct 2022, Published online: 12 Dec 2022

References

  • Ahumada-Castro U, Silva-Pavez E, Lovy A, Pardo E, Molgomicron J, Cardenas C. 2019. MTOR-independent autophagy induced by interrupted endoplasmic reticulum-mitochondrial Ca(2+) communication: a dead end in cancer cells. Autophagy. 15(2):358–361.
  • Aki T, Unuma K, Uemura K. 2017. Emerging roles of mitochondria and autophagy in liver injury during sepsis. Cell Stress. 1(2):79–89.
  • Alvarez S, Vico T, Vanasco V. 2016. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol. 81(Pt B):307–314.
  • Anderson DP, Allen WJ, Barcroft H, Edholm OG, Manning GW. 1946. Circulatory changes during fainting and coma caused by oxygen lack. J Physiol. 104(4):426–434.
  • Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S. 2014. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care. 29(4):500–511.
  • Arany Z, He H, Lin J, Hoyer   K, Handschin   C, Toka  O, Ahmad  F, Matsui  T, Chin   S, Wu  PH , et al. 2005. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 1(4):259–271.
  • Beesley SJ, Weber G, Sarge T, et al. 2018. Septic cardiomyopathy. Crit Care Med. 46(4):625–634.
  • Belcher E, Mitchell J, Evans T. 2002. Myocardial dysfunction in sepsis: no role for NO? Heart. 87(6):507–509.
  • Bernardi P, Von Stockum S. 2012. The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium. 52(1):22–27.
  • Bouillaud F, Alves-Guerra M C, Ricquier D. 2016. UCPs, at the interface between bioenergetics and metabolism. Biochim Biophys Acta. 1863(10):2443–2456.
  • Boyman L, Karbowski M, Lederer WJ. 2019. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends Mol Med. 26(1):21–39.
  • Bravo-San Pedro JM, Kroemer G, Galluzzi L. 2017. Autophagy and mitophagy in cardiovascular disease. Circ Res. 120(11):1812–1824.
  • Brealey D, Brand M, Hargreaves I, et al. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 360(9328):219–223.
  • Bruni FD, Komwatana P, Soulsby ME, et al. 1978. Endotoxin and myocardial failure: role of the myofibril and venous return. Am J Physiol. 235(2):H150–H156.
  • Cadenas S. 2018. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 1859(9):940–950.
  • Cao F, Maguire ML, Mcandrew DJ, et al. 2020. Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure. Basic Res Cardiol. 115(2):12.
  • Carre JE, Orban JC, Re L, et al. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 182(6):745–751.
  • Carreras-Sureda A, Jana F, Urra H, et al. 2019. Non-canonical function of IRE1alpha determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 21(6):755–767.
  • Chen W, Luo S, Xie P, et al. 2018. Overexpressed UCP2 regulates mitochondrial flashes and reverses lipopolysaccharide-induced cardiomyocytes injury. Am J Transl Res. 10(5):1347–1356.
  • Cimolai MC, Alvarez S, Bode C, et al. 2015. Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci. 16(8):17763–17778.
  • Coopersmith CM, DE BACKER D, Deutschman CS, et al. 2018. Surviving sepsis campaign: research priorities for sepsis and septic shock. Crit Care Med. 46(8):1334–1356.
  • Dorn GW 2nd, Kitsis RN. 2015. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res. 116(1):167–182.
  • Dromparis P, Paulin R, Sutendra G, et al. 2013. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res. 113(2):126–136.
  • Durand A, Duburcq T, Dekeyser T, et al. 2017. Involvement of mitochondrial disorders in septic cardiomyopathy. Oxid Med Cell Longev. 2017:4076348.
  • Ehrman RR, Sullivan AN, Favot MJ, et al. 2018. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care. 22(1):112.
  • Elrod JW, Wong R, Mishra S, et al. 2010. Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 120(10):3680–3687.
  • Escames G, Lopez LC, Tapias V, et al. 2006. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res. 40(1):71–78.
  • Eyenga P, Roussel D, Morel J, et al. 2018. Time course of liver mitochondrial function and intrinsic changes in oxidative phosphorylation in a rat model of sepsis. Intensive Care Med Exp. 6(1):31.
  • Fang X, Wang J. 2018. [Role of mitochondrial dysfunction in the pathogenesis of septic cardiomyopathy]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 30(2):189–192.
  • Fattahi F, Frydrych LM, Bian G, et al. 2018. Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol. 102:32–41.
  • Fedson DS. 2009. Meeting the challenge of influenza pandemic preparedness in developing countries. Emerg Infect Dis. 15(3):365–371.
  • Fender AC, Kleeschulte S, Stolte S, et al. 2020. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic Res Cardiol. 115(2):10.
  • Finck BN, Kelly DP. 2007. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 115(19):2540–2548.
  • Fink MP. 2001. Cytopathic hypoxia. mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 17(1):219–237.
  • Fink MP, Warren HS. 2014. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 13(10):741–758.
  • Friedman JR, Lackner LL, West M, et al. 2011. ER tubules mark sites of mitochondrial division. Science. 334(6054):358–362.
  • Friedman JR, Nunnari J. 2014. Mitochondrial form and function. Nature. 505(7483):335–343.
  • Gureev AP, Shaforostova EA, Popov VN. 2019. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1alpha signaling pathways. Front Genet. 10:435.
  • Haileselassie B, Mukherjee R, Joshi AU, et al. 2019. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol. 130:160–169.
  • Handschin C, Spiegelman BM. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 27(7):728–735.
  • Hardeland R. 2018. Melatonin and inflammation-story of a double-edged blade. J Pineal Res. 65(4):e12525.
  • Harris J, Lang T, Thomas JPW, et al. 2017. Autophagy and inflammasomes. Mol Immunol. 86:10–15.
  • Hasnat M, Yuan Z, Naveed M, et al. 2019. Drp1-associated mitochondrial dysfunction and mitochondrial autophagy: a novel mechanism in triptolide-induced hepatotoxicity. Cell Biol Toxicol. 35(3):267–280.
  • Hoppins S, Nunnari J. 2009. The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta. 1793(1):20–26.
  • Horak J, Martinkova V, Radej J, et al. 2019. Back to basics: recognition of sepsis with new definition. J Clin Med. 8(11):1838.
  • Hotchkiss RS, Karl IE. 1992. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. Jama. 267(11):1503–1510.
  • Huang J, Peng W, Zheng Y, et al. 2019. Upregulation of UCP2 expression protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes. Oxid Med Cell Longev. 2019:2758262.
  • Jiang BM, Liang PF, Tang YT, et al. 2019. [Study on the expression and roles of nucleolin in cardiac injury in septic mice]. Zhonghua yi xue za zhi. 99(1):57–61.
  • Jiang X, Cai S, Jin Y, et al. 2021. Irisin attenuates oxidative stress, mitochondrial dysfunction, and apoptosis in the H9C2 cellular model of septic cardiomyopathy through augmenting Fundc1-dependent mitophagy. Oxid Med Cell Longev. 2021:2989974.
  • Jiang ZM, Yang QH, Zhu CQ. 2017. UCP2 in early diagnosis and prognosis of sepsis. Eur Rev Med Pharmacol Sci. 21(3):549–553.
  • Jin Q, Li R, Hu N, et al. 2018. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol. 14:76–87.
  • Joseph LC, Kokkinaki D, Valenti MC, et al. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight. 2(17):e94248.
  • Kalbitz M, Grailer JJ, Fattahi F, et al. 2015. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J. 29(5):2185–2193.
  • Kerkhofs M, Bittremieux M, Morciano G, et al. 2018. Emerging molecular mechanisms in chemotherapy: Ca(2+) signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis. 9(3):334.
  • Kim MJ, Bae SH, Ryu JC, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 12(8):1272–1291.
  • Kulikova TG, Stepanova OV, Voronova AD, et al. 2018. Pathological remodeling of the myocardium in chronic heart failure: role of PGC-1alpha. Bull Exp Biol Med. 164(6):794–797.
  • Kwong JQ, Molkentin JD. 2015. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 21(2):206–214.
  • Lancel S, Hassoun S M, Favory R, et al. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther. 329(2):641–648.
  • Lee JE, Westrate LM, Wu H, et al. 2016. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 540(7631):139–143.
  • Lehman JJ, Barger PM, Kovacs A, et al. 2000. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106(7):847–856.
  • Lemasters JJ, Theruvath TP, Zhong Z, et al. 2009. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 1787(11):1395–1401.
  • Levy RJ. 2007. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock. 28(1):24–28.
  • Li J, Zhang B, Chang X, et al. 2020. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ Pollut. 256:113430.
  • Li S, Wu H, Han D, et al. 2018. A novel mechanism of mesenchymal stromal cell-mediated protection against sepsis: restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS. Oxid Med Cell Longev. 2018:3537609.
  • Li Y, Feng YF, Liu XT, et al. 2021. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 38:101771.
  • Mao JY, Su LX, Li DK, et al. 2021. The effects of UCP2 on autophagy through the AMPK signaling pathway in septic cardiomyopathy and the underlying mechanism. Ann Transl Med. 9(3):259.
  • Michalska B, Duszynski J, Szymanski J. 2016. [Mechanism of mitochondrial fission - structure and function of Drp1 protein]. Postepy Biochem. 62(2):127–137.
  • Moncada S, Erusalimsky JD. 2002. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 3(3):214–220.
  • Moon JS, Lee S, Park MA, et al. 2015. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J Clin Invest. 125(2):665–680.
  • Morales PE, Arias-Duran C, Avalos-Guajardo Y, et al. 2019. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 71:100822.
  • Naon D, Scorrano L. 2014. At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim Biophys Acta. 1843(10):2184–2194.
  • Ouyang H, Li Q, Zhong J, et al. 2020. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways. J Cell Physiol. 235(10):6647–6659.
  • Pan P, Wang X, Liu D. 2018. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J Int Med Res. 46(6):2157–2169.
  • Pan P, Zhang H, Su L, et al. 2018. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules. 23(3):675 .
  • Parikh SM, Yang Y, He L, et al. 2015. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol. 35(1):108–119.
  • Piantadosi CA, Suliman HB. 2012. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta. 1820(4):532–541.
  • Piel DA, Deutschman CS, Levy RJ. 2008. Exogenous cytochrome C restores myocardial cytochrome oxidase activity into the late phase of sepsis. Shock. 29(5):612–616.
  • Piquereau J, Godin R, Deschenes S, et al. 2013. Protective role of PARK2/parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 9(11):1837–1851.
  • Poggi C, Dani C. 2018. Sepsis and oxidative stress in the newborn: from pathogenesis to novel therapeutic targets. Oxid Med Cell Longev. 2018:9390140.
  • Pyle A, Ibbett I M, Gordon C, et al. 2009. A common UCP2 polymorphism predisposes to stress hyperglycaemia in severe sepsis. J Med Genet. 46(11):773–775.
  • Qiao Y, Wang L, Hu T, et al. 2021. Capsaicin protects cardiomyocytes against lipopolysaccharide-induced damage via 14-3-3γ-mediated autophagy augmentation. Front Pharmacol. 12:659015.
  • Rieusset J. 2018. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis. 9(3):388.
  • Roshon MJ, Kline JA, Thornton LR, et al. 2003. Cardiac UCP2 expression and myocardial oxidative metabolism during acute septic shock in the rat. Shock. 19(6):570–576.
  • Rowland AA, Voeltz GK. 2012. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 13(10):607–625.
  • Russell LK, Mansfield CM, Lehman JJ, et al. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 94(4):525–533.
  • Ryter SW. 2019. Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys. 678:108186.
  • Saito T, Sadoshima J. 2015. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 116(8):1477–1490.
  • Sato R, Kuriyama A, Takada T, et al. 2016. Prevalence and risk factors of sepsis-induced cardiomyopathy: a retrospective cohort study. Medicine (Baltimore). 95(39):e5031.
  • Scarpulla RC. 2008. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci. 1147:321–334.
  • Scarpulla RC. 2011. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 1813(7):1269–1278.
  • Sciarretta S, Maejima Y, Zablocki D, et al. 2018. The role of autophagy in the heart. Annu Rev Physiol. 80:1–26.
  • Shang X, Li J, Yu R, et al. 2019. Sepsis-related myocardial injury is associated with Mst1 upregulation, mitochondrial dysfunction and the Drp1/F-actin signaling pathway. J Mol Histol. 50(2):91–103.
  • Shang X, Lin K, Zhang Y, et al. 2020. Mst1 deletion reduces septic cardiomyopathy via activating parkin-related mitophagy. J Cell Physiol. 235(1):317–327.
  • Sharp WW, Fang YH, Han M, et al. 2014. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. Faseb J. 28(1):316–326.
  • Shen YL, Shi Y Z, Chen GG, et al. 2018. TNF-α induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. Int J Mol Med. 41(4):2317–2327.
  • Singer M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 5(1):66–72.
  • Singer M, Deutschman CS, Seymour CW, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama. 315(8):801–810.
  • Song M, Gong G, Burelle Y, et al. 2015. Interdependence of Parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res. 117(4):346–351.
  • Sreedhar A, Zhao Y. 2017. Uncoupling protein 2 and metabolic diseases. Mitochondrion. 34:135–140.
  • Suliman HB, Sweeney TE, Withers CM, et al. 2010. Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci. 123(Pt 15):2565–2575.
  • Suliman HB, Welty-Wolf KE, Carraway M, et al. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res. 64(2):279–288.
  • Szabadkai G, Bianchi K, Varnai P, et al. 2006. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2 + channels. J Cell Biol. 175(6):901–911.
  • Takasu O, Gaut JP, Watanabe E, et al. 2013. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 187(5):509–517.
  • Tan Y, Ouyang H, Xiao X, et al. 2019. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones. 24(3):595–608.
  • Tang R, Qi PP, Liu YS, et al. 2019. Uncoupling protein 2 drives myocardial dysfunction in murine models of septic shock. Biomed Res Int. 2019:9786101.
  • Toda C, Kim JD, Impellizzeri D, et al. 2016. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell. 164(5):872–883.
  • Trumbeckaite S, Opalka JR, Neuhof C, et al. 2001. Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur J Biochem. 268(5):1422–1429.
  • Tsolaki V, Makris D, Mantzarlis K, et al. 2017. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev. 2017:7393525.
  • Turdi S, Han X, Huff AF, et al. 2012. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy. Free Radic Biol Med. 53(6):1327–1338.
  • Vanasco V, Saez T, Magnani ND, et al. 2014. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biol Med. 77:1–9.
  • Van Vliet AR, Agostinis P. 2018. Mitochondria-associated membranes and ER stress. Curr Top Microbiol Immunol. 414:73–102.
  • Van Vliet AR, Verfaillie T, Agostinis P. 2014. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta. 1843(10):2253–2262.
  • Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, et al. 2016. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 594(3):509–525.
  • Veeresh P, Kaur H, Sarmah D, et al. 2019. Endoplasmic reticulum-mitochondria crosstalk: from junction to function across neurological disorders. Ann N Y Acad Sci. 1457(1):41–60.
  • Volt H, García JA, Doerrier C, et al. 2016. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res. 60(2):193–205.
  • Wang GQ, Tang T, Wang ZS, et al. 2016. Overexpression of hypo-phosphorylated IkappaBbeta at Ser313 protects the heart against sepsis. PLoS One. 11(8):e0160860.
  • Wang J, Zhou H. 2020. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharmaceutica Sinica B. 10(10):1866–1879.
  • Wang X, Liu D, Chai W, et al. 2015. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock. 43(3):292–297.
  • Wang X, Qin W, Qiu X, et al. 2014. A novel role of exogenous carbon monoxide on protecting cardiac function and improving survival against sepsis via mitochondrial energetic metabolism pathway. Int J Biol Sci. 10(7):777–788.
  • Wang Y, Jasper H, Toan S, et al. 2021. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol. 45:102049.
  • Ward PA, Fattahi F. 2019. New strategies for treatment of infectious sepsis. J Leukocyte Biol. 106(1):187–192.
  • Wu S, Lu Q, Ding Y, et al. 2019. Hyperglycemia-driven inhibition of AMP-activated protein kinase alpha2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 139(16):1913–1936.
  • Wu S, Lu Q, Wang Q, et al. 2017. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 136(23):2248–2266.
  • Wu W, Li W, Chen H, et al. 2016. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy. 12(9):1675–1676.
  • Xiao X, Hu Y, Quiros PM, et al. 2014. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am J Physiol Renal Physiol. 306(11):F1318–F1326.
  • Yang CS, Yuk JM, Kim JJ, et al. 2013. Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2. PLoS One. 8(5):e63435.
  • Yang L, Zhang H, Chen P. 2018. Sulfur dioxide attenuates sepsis-induced cardiac dysfunction via inhibition of NLRP3 inflammasome activation in rats. Nitric Oxide. 81:11–20.
  • Yao RQ, Ren C, Xia ZF, et al. 2020. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 17(2):385–401.
  • Yarana C, Sripetchwandee J, Sanit J, et al. 2012. Calcium-induced cardiac mitochondrial dysfunction is predominantly mediated by cyclosporine A-dependent mitochondrial permeability transition pore. Arch Med Res. 43(5):333–338.
  • Youle RJ, Van Der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science. 337(6098):1062–1065.
  • Yu JW, Lee MS. 2016. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 39(11):1503–1518.
  • Yu X, Hao M, Liu Y, et al. 2019. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur J Pharmacol. 864:172715.
  • Yuan H, Perry CN, Huang C, et al. 2009. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol. 296(2):H470–H479.
  • Zhang H, Feng YW, Yao YM. 2018. Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res. 5(1):41.
  • Zhang J, Wang L, Xie W, et al. 2020. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J Cell Physiol. 235(3):2847–2856.
  • Zhang X, Yuan D, Sun Q, et al. 2017. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. Faseb J. 31(10):4382–4395.
  • Zhang Y, Xu H. 2016. Translational regulation of mitochondrial biogenesis. Biochem Soc Trans. 44(6):1717–1724.
  • Zhang Z, Meszaros G, He WT, et al. 2017. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med. 214(9):2671–2693.
  • Zheng G, Lyu J, Liu S, et al. 2015. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. Int J Mol Med. 35(6):1525–1536.
  • Zhong J, Tan Y, Lu J, et al. 2019. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: A novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol. 26:101287.
  • Zhong X, He J, Zhang X, et al. 2019. UCP2 alleviates tubular epithelial cell apoptosis in lipopolysaccharide-induced acute kidney injury by decreasing ROS production. Biomed Pharmacother. 115:108914.
  • Zhong Z, Sanchez-Lopez E, Karin M. 2016. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol. 34(4 Suppl 98):12–16.
  • Zhong Z, Umemura A, Sanchez-Lopez E, et al. 2016. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 164(5):896–910.
  • Zhou H, Hu S, Jin Q, et al. 2017. Mff-Dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 6(3):e005328.
  • Zhou H, Ren J, Toan S, et al. 2021. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev. 66:101250.
  • Zhou H, Zhu P, Wang J, et al. 2018. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 25(6):1080–1093.
  • Zhou R, Yazdi AS, Menu P, et al. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature. 469(7329):221–225.
  • Zhou T, Chang L, Luo Y, et al. 2019. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol. 21:101120.
  • Zhu X, Shen W, Yao K, et al. 2019. Fine-tuning of PGC1alpha expression regulates cardiac function and longevity. Circ Res. 125(7):707–719.
  • Zhu Y, Kuang L, Wu Y, et al. 2021. Protective effects of inhibition of mitochondrial fission on organ function after sepsis. Front Pharmacol. 12:712489.
  • Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94(3):909–950.