1,302
Views
1
CrossRef citations to date
0
Altmetric
Cancer Biology

Inhibition or promotion, the potential role of arginine metabolism in immunotherapy for colorectal cancer

ORCID Icon, &
Article: 2163306 | Received 19 Sep 2022, Accepted 23 Nov 2022, Published online: 17 Jan 2023

References

  • Aaboe Jørgensen M, Ugel S, Linder Hübbe M, Carretta M, Perez-Penco M, Weis-Banke SE, Martinenaite E, Kopp K, Chapellier M, Adamo A, et al. 2021. Arginase 1-based immune modulatory vaccines induce anticancer immunity and synergize with anti-PD-1 checkpoint blockade. Cancer Immunol Res. 9(11):1316–1326.
  • Abbott M, Ustoyev Y. 2019. Cancer and the immune system: the history and background of immunotherapy. Semin Oncol Nurs. 35(5):150923.
  • Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE. 2011. Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res. 1373:48–54.
  • Albaugh VL, Pinzon-Guzman C, Barbul A. 2017. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol. 115(3):273–280.
  • Alexandrou C, Al-Aqbi SS, Higgins JA, Boyle W, Karmokar A, Andreadi C, Luo J-L, Moore DA, Viskaduraki M, Blades M, et al. 2018. Sensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymes. Sci Rep. 8(1):12096.
  • André T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al. 2020. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 383(23):2207–2218.
  • Aran V, Victorino AP, Thuler LC, Ferreira CG. 2016. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 15(3):195–203.
  • Bansal V, Rodriguez P, Wu G, Eichler DC, Zabaleta J, Taheri F, Ochoa JB. 2004. Citrulline Can preserve proliferation and prevent the loss of CD3 ζ chain under conditions of Low arginine. JPEN J Parenter Enteral Nutr. 28(6):423–430.
  • Baritaki S, Huerta-Yepez S, Sahakyan A, Karagiannides I, Bakirtzi K, Jazirehi A, Bonavida B. 2010. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer. Cell Cycle. 9(24):4931–4940.
  • Battaglia V, DeStefano Shields C, Murray-Stewart T, Casero RA. 2014. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids. 46(3):511–519.
  • Bednarz-Misa I, Fleszar MG, Zawadzki M, Kapturkiewicz B, Kubiak A, Neubauer K, Witkiewicz W, Krzystek-Korpacka M. 2020. L-Arginine/NO pathway metabolites in colorectal cancer: relevance as disease biomarkers and predictors of adverse clinical outcomes following surgery. J Clin Med. 9(6):1782.
  • Böger RH. 2014. The pharmacodynamics of L-arginine. Altern Ther Health Med. 20(3):48–54.
  • Boland PM, Yurgelun MB, Boland CR. 2018. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J Clin. 68(3):217–231.
  • Bonavida B, Garban H. 2015. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol. 6:486–494.
  • Brankovic B, Stanojevic G, Stojanovic I, et al. 2017. Nitric oxide synthesis modulation - a possible diagnostic and therapeutic target in colorectal cancer. J Buon. 22(1):162–169.
  • Breakstone R. 2021. Colon cancer and immunotherapy—can we go beyond microsatellite instability? Transl Gastroenterol Hepatol. 6:12.
  • Canale FP, Basso C, Antonini G, Perotti M, Li N, Sokolovska A, Neumann J, James MJ, Geiger S, Jin W, et al. 2021. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 598(7882):662–666.
  • Chen Y, Liu C, Zhu S, Liang X, Zhang Q, Luo X, Yuan L, Song L. 2021. PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: immunotherapeutic amplification strategies against colorectal cancer. Int Immunopharmacol. 96:107607.
  • Chinese Society of Clinical Oncology Guidelines Working Committee. 2021. GUIDELINES OF CHINESE SOCIETY OF CLINICAL ONCOLOGY (CSCO) COLORECTAL CANCER (2021)[M]. Beijing: People's Medical Publishing House, 2021: 1-141.
  • Cohen R, Rousseau B, Vidal J, Colle R, Diaz LA, André T. 2020. Immune checkpoint inhibition in colorectal cancer: microsatellite instability and beyond. Target Oncol. 15(1):11–24.
  • Dai F, Yu W, Song J, Li Q, Wang C, Xie S. 2017. Extracellular polyamines-induced proliferation and migration of cancer cells by ODC, SSAT, and Akt1-mediated pathway. Anticancer Drug. 28(4):457–464.
  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. 2019. Colorectal cancer. Lancet. 394(10207):1467–1480.
  • Du T, Han J. 2021. Arginine metabolism and its potential in treatment of colorectal cancer. Front Cell Dev Biol. 9:658861.
  • Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. 2021. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci. 17(14):3837–3849.
  • Feun LG, Kuo MT, Savaraj N. 2015. Arginine deprivation in cancer therapy. Curr Opin Clin Nutr Metab Care. 18(1):78–82.
  • Garcia-Ortiz A, Serrador JM. 2018. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med. 24(4):412–427.
  • Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al. 2011. A human memory T cell subset with stem cell-like properties. Nat Med. 17(10):1290–1297.
  • Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al. 2016. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167(3):829–842.e13.
  • Graboń W, Mielczarek-Puta M, Chrzanowska A, Barańczyk-Kuźma A. 2009. L-arginine as a factor increasing arginase significance in diagnosis of primary and metastatic colorectal cancer. Clin Biochem. 42(4-5):353–357.
  • Hadrup S, Donia M, Thor Straten P. 2013. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 6(2):123–133.
  • Hang D, Shen H. 2021. Sex hormone and colorectal cancer: the knowns and unknowns. Cancer Epidemiol Biomarkers Prev. 30(7):1302–1304.
  • He X, Lin H, Yuan L, Li B. 2017. Combination therapy with L-arginine and alpha-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther. 18(2):94–100.
  • Hegde PS, Chen DS. 2020. Top 10 challenges in cancer immunotherapy. Immunity. 52(1):17–35.
  • Hesterberg RS, Cleveland JL, Epling-Burnette PK. 2018. Role of polyamines in immune cell functions. Med Sci (Basel). 6(1).
  • Hong Q, Li B, Cai X, Lv Z, Cai S, Zhong Y, Wen B. 2021. Transcriptomic analyses of the adenoma-carcinoma sequence identify hallmarks associated with the onset of colorectal cancer. Front Oncol. 11:704531.
  • Hospital Authority of National Health Commission of the People's Republic of China, Chinese Society of Oncology, Chinese Medical Association. 2020. Chinese protocol of diagnosis and treatment of CRC (2020 edition). Chin J Surg. 58(08):561–585.
  • Hulin JA, Gubareva EA, Jarzebska N, et al. 2019. Inhibition of dimethylarginine dimethylaminohydrolase (DDAH) enzymes as an emerging therapeutic strategy to target angiogenesis and vasculogenic mimicry in cancer. Front Oncol. 9:1455.
  • Jin K, Ren C, Liu Y, Lan H, Wang Z. 2020. An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol. 89(Pt A):107041.
  • Johdi NA, Sukor NF. 2020. Colorectal cancer immunotherapy: options and strategies. Front Immunol. 11:1624.
  • Karimian J, Hadi A, Salehi-sahlabadi A, Kafeshani M. 2019. The effect of arginine intake on colorectal cancer: a systematic review of literatures. Clin Nutr Res. 8(3):209–218.
  • Khalyfa AA, Punatar S, Aslam R, Yarbrough A. 2021. Exploring the inflammatory pathogenesis of colorectal cancer. Diseases. 9(4).
  • Kim S-H, Roszik J, Grimm EA, Ekmekcioglu S. 2018. Impact of l-arginine metabolism on immune response and anticancer immunotherapy. Front Oncol. 8:67.
  • Kishore C, Bhadra P. 2021. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol. 893:173819.
  • Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, et al. 2005. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A. 102(27):9571–9576.
  • Kossenas K, Constantinou C. 2021. Epidemiology, molecular mechanisms, and clinical trials: an update on research on the association between red meat consumption and colorectal cancer. Curr Nutr Rep.
  • Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. 2021. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep. 48(12):8075–8095.
  • Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357(6349):409–413.
  • Lee YC, Su YT, Liu TY, et al. 2018. L-Arginine and L-citrulline supplementation have different programming effect on regulatory T-cells function of infantile rats. Front Immunol. 9:2911.
  • Long F, Hu G, Ma M, et al. 2021. Interpretation of surgical part of updated NCCN clinical practice guidelines for colon cancer and rectal cancer (Version 1.2021). J Clin Surg. 29(5):401–404.
  • Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, et al. 2021. Immune checkpoint inhibitors in colorectal cancer: challenges and future prospects. Biomedicines. 9(9).
  • Marti I, Lindez AA, Dunand-Sauthier I, Conti M, et al. 2019. Mitochondrial arginase-2 is a cellautonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight. 4(24).
  • Masoud GN, Li W. 2015. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5(5):378–389.
  • Meraviglia S, Lo Presti E, Tosolini M, La Mendola C, Orlando V, Todaro M, Catalano V, Stassi G, Cicero G, Vieni S, et al. 2017. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology. 6(10):e1347742.
  • Modest DP, Pant S, Sartore-Bianchi A. 2019. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer. 109:70–83.
  • National Cancer Center, China, Expert Group of the Development of China Guideline for the Screening, Early Detection and Early Treatment of Colorectal Cancer. 2021. Guideline for the screening, early detection and early treatment of colorectal cancer (2020, Beijing). China Cancer. 30(01):1–28.
  • Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al. 2018. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36(8):773–779.
  • Pascolutti R, Sun X, Kao J, Maute R, Ring A, Bowman G, Kruse A. 2016. Structure and dynamics of PD-L1 and an ultra-high-affinity PD-1 receptor mutant. Structure. 24(10):1719–1728.
  • Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N, Baradaran B. 2020. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 235(7-8):5461–5475.
  • Paz EA, Lafleur B, Gerner EW. 2014. Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells. Mol Carcinog. 53(Suppl 1):E96–E106.
  • Perrod G, Rahmi G, Cellier C. 2021. Colorectal cancer screening in Lynch syndrome: indication, techniques and future perspectives. Dig Endosc. 33(4):520–528.
  • Picard E, Verschoor CP, Ma GW, Pawelec G. 2020. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front Immunol. 11:369.
  • Pulendran B, Davis MM. 2020. The science and medicine of human immunology. Science. 369(6511.
  • Raber P, Ochoa AC, Rodriguez PC. 2012. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest. 41(6-7):614–634.
  • Robrahn L, Jiao L, Cramer T. 2020. Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis. Cancer Lett. 490:186–192.
  • Rodriguez PC, Quiceno DG, Ochoa AC. 2007. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 109(4):1568–1573.
  • Ruan D, Fouad AM, Fan QL, Huo XH, Kuang ZX, Wang H, Guo CY, Deng YF, Zhang C, Zhang JH, Jiang SQ. 2020. Dietary L-arginine supplementation enhances growth performance, intestinal antioxidative capacity, immunity and modulates gut microbiota in yellow-feathered chickens. Poult Sci. 99(12):6935–6945.
  • Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Borujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, et al. 2022. Nitric oxide and immune responses in cancer: searching for NewTherapeutic strategies. Curr Med Chem. 29(9):1561–1595.
  • Satoh Y, Kotani H, Iida Y, Taniura T, Notsu Y, Harada M. 2020. Supplementation of l-arginine boosts the therapeutic efficacy of anticancer chemoimmunotherapy. Cancer Sci. 111(7):2248–2258.
  • Seidel JA, Otsuka A, Kabashima K. 2018. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 8:86.
  • Selvi I, Basar H, Baydilli N, Murat K, Kaymaz O. 2019. The importance of plasma arginine level and its downstream metabolites in diagnosing prostate cancer. Int Urol Nephrol. 51(11):1975–1983.
  • Sikalidis AK. 2015. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res. 21(1):9–17.
  • Sosnowska A, Chlebowska-Tuz J, Matryba P, Pilch Z, Greig A, Wolny A, Grzywa TM, Rydzynska Z, Sokolowska O, Rygiel TP, et al. 2021. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma. Oncoimmunology. 10(1):1956143.
  • Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, Li W, MacKinnon AL, Makkouk A, Marguier G, et al. 2017. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 5(1):101.
  • Sun X, Shen J, Liu C, Li S, Peng Y, Chen C, Yuan B, Gao Y, Meng X, Jiang H, Zhang J. 2020. L-Arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community. Asian-Australasian Asian-Australas J Anim Sci. 33(1):166–176.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3):209–249.
  • Szefel J, Danielak A, Kruszewski WJ. 2019. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci. 64(1):104–110.
  • Thwe PM, Amiel E. 2018. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett. 412:236–242.
  • Vannini F, Kashfi K, Nath N. 2015. The dual role of iNOS in cancer. Redox Biol. 6:334–343.
  • Vedenko A, Panara K, Goldstein G, Ramasamy R, Arora H. 2020. Tumor microenvironment and nitric oxide: concepts and mechanisms. Adv Exp Med Biol. 1277:143–158.
  • Vynnytska-Myronovska BO, Kurlishchuk Y, Chen O, Bobak Y, Dittfeld C, Hüther M, Kunz-Schughart LA, Stasyk OV. 2016. Arginine starvation in colorectal carcinoma cells: sensing, impact on translation control and cell cycle distribution. Exp Cell Res. 341(1):67–74.
  • Weigert A, von Knethen A, Fuhrmann D, Dehne N, Brüne B. 2018. Redox-signals and macrophage biology. Mol Aspects Med. 63:70–87.
  • Wolf C, Brüss M, Hänisch B, Göthert M, von Kügelgen I, Molderings GJ. 2007. Molecular basis for the antiproliferative effect of agmatine in tumor cells of colonic, hepatic, and neuronal origin. Mol Pharmacol. 71(1):276–283.
  • Wrobel P, Ahmed S. 2019. Current status of immunotherapy in metastatic colorectal cancer. Int J Colorectal Dis. 34(1):13–25.
  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. 2009. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 37(1):153–168.
  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. 2021. Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol. 1332:167–187.
  • Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. 2019. Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 17:661–674.
  • Yarlagadda K, Hassani J, Foote IP, Markowitz J. 2017. The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer. 1868(2):500–509.
  • Yeh C-L, Pai M-H, Li C-C, Tsai Y-L, Yeh S-L. 2010. Effect of arginine on angiogenesis induced by human colon cancer: in vitro and in vivo studies. J Nutr Biochem. 21(6):538–543.
  • Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. 2017. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 25(8):1163–1174.
  • Zhao P, Li L, Jiang X, Li Q. 2019. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 12(1):54.
  • Zou S, Wang X, Liu P, Ke C, Xu S. 2019. Arginine metabolism and deprivation in cancer therapy. Biomed Pharmacother. 118:109210.