1,608
Views
0
CrossRef citations to date
0
Altmetric
Agriculture

Acoustic and temperature signals generated by subterranean termite infestation: its characteristics and implementations

, , &
Article: 2167866 | Received 27 Feb 2022, Accepted 25 Oct 2022, Published online: 19 Jan 2023

References

  • Arinana A, Philippines I, Koesmaryono Y, Nandika D, Aunu R, Harahap IS, Sumertajaya IM, Bahtiar ET. 2016. Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae) capability to maintain the temperature inside its nests. J Entomol. 13(5-6):199–202.
  • Bahtiar ET, Nugroho N, Karlinasari L, Surjokusumo S. 2014. Human comfort period outside and inside bamboo stands. J Environ Sci Technol. 7(-):245–265.
  • Chapman RF. 1998. The insects: structure and function. Cambridge: Cambridge University Press.
  • Chen Y, Why A, Batista G, Mafra-Neto A, Keogh E. 2014. Flying insect classification with inexpensive sensors. J Iinsect Behav. 27(5):657–677.
  • Daud WMBW, Yahya AB, Horng CS, Sulaima MF, Sudirman R. 2013. Features extraction of electromyography signals in time domain on biceps brachii muscle. Int J Model Optim. 3(6):515–519.
  • de la Rosa JJG, Pérez AA, Salas JCP, Fernández JMS. 2015. A novel measurement method for transient detection based in wavelets entropy and the spectral kurtosis: An application to vibrations and acoustic emission signals from termite activity. Measurement. 68(-):58–69.
  • Evans T. 2002. Assessing efficacy of TermatracTM; a new microwave based technology for non-destructive detection of termites (Isoptera). Sociobiology. 40(3):575–584.
  • Evans T, Inta R, Lai JC, Lenz M. 2007. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect Soc. 54(4):374–382.
  • Evans TA, Lai JC, Toledano E, McDowall L, Rakotonarivo S, Lenz M. 2005. Termites assess wood size by using vibration signals. Proc Natl Acad Sci USA. 102(10):3732–3737.
  • Farkhanda M. 2013. Biosensors for termite control. International Conference on Sensing for Industry, Control, Communications and Security Technologies.
  • Fujii Y, Fujiwara Y, Yanase Y, Okumura S, Narahara K, Ngatsuma T, Yoshimura T, Imamura Y. 2007. Nondestructive detection of termites using a millimeter-wave imaging technique. Forest Prod J. 57(10):75.
  • Gautam BK, Henderson G. 2011. Relative humidity preference and survival of starved Formosan subterranean termites (Isoptera: Rhinotermitidae) at various temperature and relative humidity conditions. Environ Entomol. 40(5):1232–1238.
  • Giannakopoulos T, Pikrakis A. 2014. Introduction to audio analysis: a MATLAB® approach. Massachusetts: Academic Press.
  • Gutiérrez A, Ruiz V, Moltó E, Tapia G, del Mar Téllez M. 2010. Development of a bioacoustic sensor for the early detection of Red Palm Weevil (Rhynchophorus ferrugineus Olivier). Crop Prot. 29(7):671–676.
  • Hadi YS, Massijaya MY, Arinana A. 2016. Subterranean termite resistance of polystyrene-treated wood from three tropical wood species. Insects. 7(3):37.
  • Hager FA, Kirchner WH. 2013. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J Exp Biol. 216(17):3249–3256.
  • Haneda NF, Retmadjona IY, Nandika D, Arinana. 2017. Biodiversity of subterranean termites on the Acacia crassicarpa plantation. Biod J Biol Divers. 18(4):1657–1662.
  • Harris WV. 1971. Termites. Their recognition and control. London: Longman.
  • Hussein WB, Hussein MA, Becker T. 2010. Detection of the red palm weevil rhynchophorus ferrugineus using its bioacoustics features. Bioacoustics. 19(3):177–194.
  • Indrayani Y, Yoshimura T, Yanase Y, Fujii Y, Imamura Y. 2007. Evaluation of the temperature and relative humidity preferences of the western dry-wood termite Incisitermes minor (Hagen) using acoustic emission (AE) monitoring. J Wood Sci. 53(1):76–79.
  • Jayasimha P, Henderson G. 2007. Fungi isolated from integument and guts of Coptotermes formosanus and their antagonistic effect on Gleophyllum trabeum. Ann Entomol Soc Am. 100(5):703–710.
  • Kuswanto E, Ahmad I, Dungani R. 2015. Threat of subterranean termites attack on the wooden buildings in Asian countries and their control: a review. Indian J Entomol. 77(4):356–362.
  • Le-Qing Z. 2011. Insect sound recognition based on MFCC and PNN. Proceedings of the 2011 International Conference on Multimedia and Signal Processing (CMSP); IEEE.
  • Le-Qing Z, Zhen Z. 2010. An investigation in acoustic insect recognition. Orient Insects. 44(1):415–428.
  • Lewis VR, Fouche CF, Lemaster RL. 1997. Evaluation of dog-assisted searches and electronic odor devices for detecting the western subterranean termite. Forest Prod J. 47(10):79.
  • Lewis VR, Leighton S, Tabuchi R, Haverty M. 2011. Seasonal and daily patterns in activity of the western drywood termite, Incisitermes minor (Hagen). Insects. 2(4):555–563.
  • Lewis VR, Lemaster RL 1991. The potential of using acoustical emission to detect termites within wood. USDA Forest Service. Available from: https://www.fs.usda.gov/treesearch/pubs/27856.
  • Lewis VR, Power AB, Haverty MI. 2004. Surface and subsurface sensor performance in acoustically detecting western drywood termites in naturally infested boards. Forest Prod J. 54(6):57–62.
  • Mahdiani S, Jeyhani V, Peltokangas M, Vehkaoja A. 2015. Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis? Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE.
  • Mankin R, Hagstrum D, Smith M, Roda A, Kairo M. 2011. Perspective and promise: a century of insect acoustic detection and monitoring. Am Entomol. 57(1):30–44.
  • Mankin R, Osbrink W, Oi F, Anderson J. 2002. Acoustic detection of termite infestations in urban trees. J Econ Entomol. 95(5):981–988.
  • Mankin R, Smith M, Tropp J, Atkinson E, Jong D. 2008. Detection of Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae in different host trees and tissues by automated analyses of sound-impulse frequency and temporal patterns. J Econ Entomol. 101(3):838–849.
  • Matlab. 2018. Matlab R-2016a: MathWorks. Available from https://www.mathworks.com/?s_tid=gn_logo.
  • Matsuoka H, Fujii Y, Okumura S, Imamura Y, Yoshimura T. 1996. Relationship between the type of feeding behavior of termites and the acoustic emission (AE) generation. Wood Res. 83:1–7.
  • Mohamad MA, Hassan H, Nasien D, Haron H. 2015. A review on feature extraction and feature selection for handwritten character recognition. J Adv Comp Sci Appl. 1(6):204–212.
  • Nakayama T, Yoshimura T, Imamura Y. 2004. The optimum temperature-humidity combination for the feeding activities of Japanese subterranean termites. J Wood Sci. 50(6):530–534.
  • Nanda MA, Seminar KB, Nandika D, Maddu A. 2018a. A comparison study of kernel functions in the support vector machine and its application for termite detection. Information. 9(1):5.
  • Nanda MA, Seminar KB, Nandika D, Maddu A. 2018b. Discriminant analysis as a tool for detecting the acoustic signals of termites Coptotermes curvignathus (Isoptera: Rhinotermitidae). Int J Tech. 9(4):840–851.
  • Nanda MA, Seminar KB, Nandika D, Maddu A. 2018c. Population survey of subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae) on infested pine boards. J Entomol. 15(2):93–100.
  • Nandika D, Rismayadi Y, Diba F. 2015. Rayap: Biologi dan Pengendaliannya, Edisi ke-2 (Termite: Biology and its Control), 2nd ed. Surakarta. Universitas Muhammadiyah Surakarta.
  • Ni Z, Wang L, Meng J, Qiu F, Huang J. 2011. EEG signal processing in anesthesia feature extraction of time and frequency parameters. Proc Environ Sci. 8:215–220.
  • Oliver-Villanueva J, Abián-Pérez M. 2013. Advanced wireless sensors for termite detection in wood constructions. Wood Sci Tech. 47(2):269–280.
  • Patro S, Sahu KK. 2015. Normalization: a preprocessing stage. arXiv preprint arXiv:150306462.
  • Pence R, Magasin S, Nordberg R. 1954. Detecting wood-boring insects: electronic device developed as aid in locating insects destructive to timber and wood products. Calif Agric. 8(11):5–5.
  • Pinhas J, Soroker V, Hetzroni A, Mizrach A, Teicher M, Goldberger J. 2008. Automatic acoustic detection of the red palm weevil. Comput Electron Agric. 63(2):131–139.
  • Potamitis I, Ganchev T, Fakotakis N. 2006. Automatic acoustic identification of insects inspired by the speaker recognition paradigm. Proceedings of the INTERSPEECH.
  • Prasetyo E. 2014. Data mining mengolah data menjadi informasi menggunakan matlab. Yogyakarta: Andi Offset.
  • Rach MM, Gomis HM, Granado OL, Malumbres MP, Campoy AM, Martín JJS. 2013. On the design of a bioacoustic sensor for the early detection of the red palm weevil. Sensors. 13(2):1706–1729.
  • Robbins W, Mueller R, Schaal T, Ebeling T. 1991. Characteristics of acoustic emission signals generated by termite activity in wood. Proceedings of the Ultrasonics Symposium, 1991; IEEE.
  • Schofield J. 2011. Real-time acoustic identification of invasive wood-boring beetles. University of York.
  • Srinivas S, Harsha KS, Sujatha A, Narendra KG. 2013. Effcient protection of palms from RPW larvae using wireless sensor networks. Int J Comput Sci. 10(3):192–200.
  • Su N-Y. 2001. A computerized system for remote monitoring of subterranean termites near structures. J Econ Entomol. 94(6):1518–1525.
  • Sutherland AM, Tabuchi RL, Moore S, Lewis VR. 2014. Borescope-aided inspection may be useful in some drywood termite detection situations. Forest Prod J. 64(7):304–309.
  • Tsunoda K. 1993. Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) (II). Presence of methanogenic bacteria and effect of food on methane emission rates. Jpn J Appl Entomol Z. 5(4):166–174.
  • Webb J, Slaughter D, Litzkow C. 1988. Acoustical system to detect larvae in infested commodities. Fla Entomol. 71, 492–504.
  • Yanase Y, Fujii Y, Okumura S, Yoshimura T. 2012. Detection of metabolic gas emitted by termites using semiconductor gas sensors. Forest Prod J. 62(7):579–583.
  • Yanase Y, Miura M, Fujii Y, Okumura S, Yoshimura T. 2013. Evaluation of the concentrations of hydrogen and methane emitted by termite using a semiconductor gas sensor. J Wood Sci. 59(3):243–248.