764
Views
0
CrossRef citations to date
0
Altmetric
Bioengineering & Biotechnology

Identification of α-isopropylmalate synthase mutants capable of overproducing L-leucine in Corynebacterium glutamicum

, , , , &
Article: 2211237 | Received 05 Dec 2022, Accepted 19 Mar 2023, Published online: 10 May 2023

References

  • Aguirre-López B, Escalera-Fanjul X, Hersch-González J. 2020. In kluyveromyces lactis a pair of paralogous isozymes catalyze the first committed step of leucine biosynthesis in either the mitochondria or the cytosol. Front Microbiol. 11:1843.
  • Ayako Y, Saori K, Makoto N. 2018. Characterization of two 2-isopropylmalate synthase homologs from Thermus thermophilus HB27. Biochem Biophys Res Commun. 501:465–470.
  • Becker J, Zelder O, Haefner S, Schröder H, Wittmann C. 2011. From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 13:159–168.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Burkovski A. 2008. Molecular mechanisms of nitrogen control in Corynebacteria. Wymondham, UK: Caister Academic Press. pp. 183–201.
  • Calder PC. 2006. Branched-chain amino acids and immunity. J Nutr. 136:288S–293S.
  • Columbus DA, Fiorotto ML, Davis TA. 2015. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids. 47:259–270.
  • Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen JL, Delaunay S. 2005. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol. 71(1):207–213.
  • Freund H, Dienstag J, Lehrich J, Yoshimura N, Bradford RR, Rosen H, Atamian S, Simmer E, Holroyde J, Fische JE. 1982. Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann Surg. 196:209–220.
  • Gusyatiner MM, Voroshilova EB, Rostova YG, Ivanovskaya LV, Lunts MG, Khourges EM. 2004. Method for producing L-leucine. US Patent. 0091980 A1.
  • Hutson SM, Sweatt AJ, LaNoue KF. 2013. Branched-chain amino acids (BCAAs). Encyclopedia Biol Chem. 244–249.
  • Ikeda M. 2003. Amino acid production processes. Adv Biochem Eng Biotechnol. 79:1–35.
  • Jakoby M, Ngouoto-Nkili CE, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech. 13:437–441.
  • Katashkina JY, Lunts MG, Doroshenko VG, Fomina SA, Skorokhodova AY, Ivanovskaya LV, Mashko SV. 2006. Method for producing an L-amino acid using a bacterium with an optimized level of gene expression. US Patent. 0063240 A1.
  • Kohlhaw GB. 1988. α-isopropylmalate synthase from yeast. Methods Enzymol. 166:414–423.
  • Kohlhaw GB, Leary TR. 1969. α-Isopropylmalate synthase from Salmonella typhimurium: purification and properties. J Biol Chem. 244:2218–2225.
  • Kulwant S, Vinod B. 2007. Cation induced differential effect on structural and functional properties of Mycobacterium tuberculosis α-isopropylmalate synthase. BMC Struct Biol. 7:39.
  • Lee SY, Lee DY, Kim TY. 2005. Systems biotechnology for strain improvement. Trends Biotechnol. 23:349–358.
  • Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. 2003. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol. 104:241–252.
  • Michael V, Sabine H, Simon K, Tino P, Lothar E, Vo J, Michaelm B. 2014. Pushing product formation to its limit: Metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. doi: 10.1016/j.ymben.2013.12.001.
  • Mikhail MG, Maria GL, Yuly IK, Lirina VI, Elvira BV. 2002. DNA coding for mutant isopropylmalate -synthase L-leucine-producing microorganism and method for producing L-leucine. United States Patent. US6403342B1.
  • Nakamura J, Hirano S, Ito H, Wachi M. 2007. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol. 73:4491–4498.
  • Nayden K, Christopher JS, Edward NB. 2004. Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. PNAS. 101(22):8395–8300.
  • Park JH, Lee SY. 2008. Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol. 19:454–460.
  • Park JH, Lee SY. 2010. Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol. 85:491–506.
  • Pátek M. 2007. Branched-chain amino acids. Microbiol Monogr. 5:129–162.
  • Pátek M, Krumbach K, Eggeling L, Sahm H. 1994. Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol. 60:133–140.
  • Patrick AF. 2012. Structural and functional characterization of α-isopropylmalate synthase and citramalate synthase, members of the LeuA dimer superfamily. Arch Biochem Biophys. 519:202–209.
  • Sambrook J, Fritsch E, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press. pp. 23–38.
  • Stieglitz BI, Calvo JM. 1974. Distribution of the isopropylmalate pathway to leucine among diverse bacteria. J Bacteriol. 118(3):935–941.
  • Suchanek M, Radzikowska A, Thiele C. 2005. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods. 2:261–268.
  • Tan Y, Xu D, Li Y, Wang X. 2012. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid. 67:44–52.
  • Tsuchida T, Momose H. 1975. Genetic changes of regulatory mechanisms occurred in leucine and valine producing mutants derived from Brevibacterium lactofermentum. Agric Biol Chem. 39:2193–2198.
  • Tsuchida T, Momose H. 1986. Improvement of an L-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to α-acetohydroxy acid synthetase. Appl Environ Microbiol. 51:1024–1027.
  • Tsuchida T, Yoshinaga F, Kubota K, Momose H, Okumura S. 1974. Studies on fermentative production of branched-chain amino acids. I. Production of L-leucine by a mutant of Brevibacterium lactofermentum 2256. Agric Biol Chem. 38:1907–1911.
  • Vigueras-Meneses LG, Escalera-Fanjul X, El-Hafidi M, Montalvo-Arredondo J, Gómez-Hernández N, Colón M, Granados E, Campero-Basaldua C, Riego-Ruiz L, Scazzocchio C, et al. 2022. Two alpha isopropylmalate synthase isozymes with similar kinetic properties are extant in the yeast Lachancea kluyveri. FEMS Yeast Res. 22:1–10.
  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Van O J, Bott M. 2013. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. 22:40–52.
  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Van OJ, Bott M. 2014. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. 22:40–52.
  • Vogt M, Krumbach K, Bang WG, Van OJ, Noack S, Klein B, Bott M, Eggeling L. 2015. The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol. 99(2):791–800.
  • Wandee Y, Supaporn L, Palittapongarnpim P. 2009. Characterization of α-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis. BMC Microbiol. 9:122.
  • Zhang C, Kang Z, Zhang J, Du G, Chen J, Yu X. 2014. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. FEMS Microbiol Lett. 353:11–18.
  • Zhang C, Zhang J, Kang Z, Du G, Yu X, Wang T, Chen J. 2013. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. J Ind Microbiol Biotechnol. 40:643–651.