1,206
Views
0
CrossRef citations to date
0
Altmetric
Agriculture

Agro-morphological traits-based genetic diversity assessment on oat (Avena sativa L.) genotypes in the central highlands of Ethiopia

ORCID Icon, , & ORCID Icon
Article: 2236313 | Received 12 Jan 2023, Accepted 27 Jun 2023, Published online: 19 Jul 2023

References

  • Alemu T. 2015. Assessing potable water coverage (the case of Ada-Berga district). Thesis project work report for master of art in rural development. St. Mary’s University.
  • Allard RW. 1960. Principles of plant breeding. New York: Wiley and Sons. Inc.
  • Ashenafi A. 2018. Genetic diversity, relation between characters, and aluminum toxicity tolerance of Avena species from Ethiopia. Doctoral Dissertation. Addis Ababa, University.
  • Astatke H. 1979. Forage crops and pasture management in the highlands of Ethiopia. Forage and Range Bulletin No. 2: IAR (Institute of Agricultural Research), Addis Ababa, Ethiopia.
  • Atman P. 2017. Evaluation of oat (Avena sativa L.) genotypes for yield and quality characters. MSc thesis. Haryana, India: College of Agriculture.
  • Ballare CL, Scopel AL, Sanchez RA. 1990. Farred radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science. 247:329–332. doi:10.1126/science.247.4940.329.
  • Bhatia R, Dey SS, Kumar R. 2017. Genetic divergence studies in tulip (Tulipa gesneriana L.). Indian J Horticulture. 74(4):562–567. doi:10.5958/0974-0112.2017.00108.6.
  • Bicer T, Sakar D. 2004. Genetic variability and heritability for grain yield and other characters in Lentil. J Bio Sci. 4(2):2016–2218.
  • Bind H, Bharti B, Pandey MK, Kumar S, Vishwanath D, Kerkhi SA. 2016. Genetic variability, heritability and genetic advance studies for different characters on green fodder yield in oat (Avena sativa L.). Agric Sci Dig. 36(2):88–91.
  • Burton GW, DeVane EW. 1953. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron J. 45:478–481. doi:10.2134/agronj1953.00021962004500100005x.
  • Ceccarelli S. 1989. Wide adaptation: How wide? Euphytica. 40:197–205. doi:10.1007/BF00024512.
  • Ceccarelli S. 1997. Adaptation to low/high input cultivation. In: Tigerstedt P.M.A., editor. Adaptation in plant breeding. The Netherlands: Kluwer Academic Publishers; p. 225–236.
  • Chakraborty J, Arora RN, Joshi UN, Chhabra AK. 2014. Evaluation of Avena species for yield, quality attributes and disease reaction. Forage Research. 39(4):179–184.
  • Charupriya C, Singh SK. 2019. Genetic variability, heritability and genetic advance studies in oat (Avena sativa L.). Int J Chem Stud. 7(1):992–994.
  • Comstock RE, Robinson HF. 1952. Estimation of average dominance of genes. In: Heterosis. Ames: Iowa State College Press; p. 494–516.
  • Direba H. 2012. Survival reproductive and productive performance of pure jersey cattle at Adea Berga dairy research center in the central highlands of Ethiopia. MSc. thesis. Vienna, Austria: University of Natural Resources and Life Sciences.
  • Dreccer MF, Van Herwaarden AF, Chapman SC. 2009. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crops Res. 112(1):43–54. doi:10.1016/j.fcr.2009.02.006.
  • Esvelt KK, Huang YF, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjørnstad Å, Bonman JM, Carson ML, Chao S. 2016. Population genomics related to adaptation in elite oat germplasm. Plant Genome. 9(2):1–12.
  • Falconer DS. 1989. Introduction to quantitative genetics, 3rd ed. London, England: Longman.
  • FAO. 2012. Production statistics, food and agriculture organization. Rome, Italy.
  • Fekede F. 2004. Evaluation of potential forage production qualities of selected oats (Avena sativa L.) genotypes. M.Sc. Thesis. Ethiopia: Alemaya University of Agriculture.
  • Gatti I, Anido FL, Vanina C, Asprelli P. 2005. Country, E. Heritability and expected selection response for yield traits in balanced asparagus. Genet Mol Res. 4(1):67–73.
  • Gemechu K. 2012. Genetic potential and limitations of Ethiopian chickpea (Cicer arietinum L.) Germplasm for improving attributes of symbiotic nitrogen fixation, phosphorus uptake and Use efficiency, and adzuki bean beetle (Callosobruchus chinensis L.) Resistance. PhD thesis, Addis Ababa, University.
  • Getachew A. 2017. Biochar, compost and biochar-compost: effects on crop performance, soil quality and greenhouse Gas emissions in tropical agricultural soils. Ph.D. dissertation. Cairns, Australia: James Cook University.
  • Getnet A. 1999. Feed resource assessment and evaluation of forage yield, quality and intake of oats and vetches grown in the highlands of Ethiopia. M.Sc. Thesis. Uppsala: Swedish University of Agricultural Science.
  • Getnet A, Fekede F, Abreham G, Muluneh M. 2004. Characterization of selected oats varieties for their important production traits in the highlands of Ethiopia. In Proceedings of farm animal biodiversity in Ethiopia: status and prospects, Addis Ababa, Ethiopia, August 28–30, 2003.
  • Gezahagn K, Mulisa F, Fekede F, Kedir M, Getnet A, Diriba G, Muluneh M, Mesfin D, Mengistu A, Alemayehu M, et al. 2021. Yield and nutritional quality of Oat (Avena sativa) genotypes under vertisols conditions in the central highlands of Ethiopia. J Agric Environ Sci. 6(2):1–16.
  • Gomez KA, Gomez AA. 1984. Statistical procedure for agricultural research, 2nd ed. International Rice Research Institute. John Wiley and Sons Inc.
  • Habte J. 2018. Analyses of phenotypic and molecular diversity, genotype by environment interaction and food-feed traits in tef [Eragrostis tef (Zucc.) Trotter]. PhD. Thesis. Ethiopia: Addis Ababa University.
  • Habte J, Kebebew A, Zerihun T. 2015. Grain yield variation and association of major traits in brown-seeded genotypes of tef [Eragrostis tef (Zucc.) Trotter]. Agricult Food Security. L4:7.
  • Harshita N. 2018. Morphological characterization, evaluation and seed quality assessment of oat germplasm. MSc thesis. Uttarakhand, India: G.B. Plant University of Agriculture and Technology.
  • Hartley HO. 1950. The maximum F-ratio as a short cut test for heterogeneity of variances. Biometrika. 37:308–312.
  • Irfan M, Ansar M, Sher A, Wasaya A, Sattar A. 2016. Improving forage yield and morphology of oat varieties through various row spacing and nitrogen application. Journal of Animal & Plant Sciences. 26(6):1718–1724.
  • Johnson HW, Robinson HF, Comstock RE. 1955. Estimates of genetic and environmental variability in soybeans. Agron J. 47:314–318. doi:10.2134/agronj1955.00021962004700070009x.
  • Kapoor R, Bajaj RK, Navjot S, Simarjit K. 2011. Correlation and path coefficient analysis in oat. Int J Plant Breeding. 5(2):133–137.
  • Khan A, Kabir MV, Alam MM. 2009. Variability, correlation and path analysis of yield and yield components of pointed gourd. J Agricult Rural Develop. 7(1):93–98.
  • Kumar P, Phogat DS, Bhukkar A. 2016. Genetic diversity analysis in oat. Forage Res. 42(2):96–100.
  • Kumar SR, Arumugam T, Anandakumar CR, Permalakshmi V. 2013. Genetic variability for quantitative and qualitative characters in Brinjal (Solanum melongena L.). Afri J Agric Res. 8(39):4956–4959.
  • Ladizinsky G. 2012. Studies in Oat evolution: Oat morphology and taxonomy. London, England: Springer.
  • Lynch P, Frey K. 1993. Genetic improvement in agronomic and physiological traits of oat since 1914. Crop Sci. 33:984–988. doi:10.2135/cropsci1993.0011183X003300050022x.
  • Martinez MF, Arelovich HM, Wehrhahne LN. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Res. 116:92–100. doi:10.1016/j.fcr.2009.11.018.
  • MoA. 2019. Ministry of Agriculture. Plant variety release, protection and seed quality control directorate. Crop Variety Register, Issue No. 22, 2019. Addis Ababa, Ethiopia.
  • Moghaddam MJ, Pourdad SS. 2009. Comparison of parametric and non-parametric methods for analysing genotype×environment interactions in safflower (Carthamus tinctorius L.). J Agric Sci. 147:601–612. doi:10.1017/S0021859609990050.
  • Monica JK, Mehta AK, Bilaiya SK, Prakarti P. 2017. Estimation of genetic diversity among genotypes of fodder oat based on principal component analysis. Int J Bio-Resource Stress Manage. 8(6):807–810.
  • Muluneh M, Getnet A, Fekede F, Gezahagn K, Tadesse T. 2012. Strengthening forage seed supply through farmers-based seed production. In proceedings of forage seed research and development in Ethiopia, Addis Ababa, Ethiopia, May 12–14, 2011.
  • Mussa J. 2017. Genetic improvement of adapted Ethiopian chickpea (Cicer arietinum L.) cultivar for drought tolerance through conventional and marker assisted backcross breeding methods. PhD. Thesis. Ethiopia: Addis Ababa University.
  • Peltonen-Sainio P. 1999. Growth and development of Oat with special reference to source-sink interaction and productivity. In: Smith D., Hamel C., editor. Crop yield, physiology and processes. Berlin Heidelberg: Springer-Verlag.
  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 45(4):1249–1255. doi:10.2135/cropsci2004.0063.
  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MA, Snape JW, Angus WJ. 2009. Raising yield potential in wheat. J Exp Bot. 60:1899–1918. doi:10.1093/jxb/erp016.
  • Rosmaina S, Hasrol YF, Juliyanti Z. 2016. Estimation of variability, heritability, and genetic advance among local chili pepper genotypes cultivated in peat lands. Bulgarian J. Agric Sci Agric Acad. 22(3):431–436.
  • Ruwali Y, Verma JS, Kumar L. 2013. Comparative genetic diversity analysis of oat (Avena sativa L.) by microsatellite markers and morphological rainfed expressions. Afr J Biotechnol. 12(22):3414–3424.
  • Sandhu SS, Brar PS, Dhall RK. 2015. Variability of agronomic and quality characteristics of garlic (Allium sativum L.) ecotypes. J Genet Plant Breeding. 47(2):133–142.
  • SAS (Statistical Analysis System). 2012. SAS/STAT guide for personal computers. version 9.4 editions. Cary, NC, USA: SAS Institute Inc.
  • Shariatipour N, Heidari B, Shams Z, Richards C. 2022. Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions. Sci Rep. 12:1121. doi:10.1038/s41598-022-05024-1.
  • Siloriya PN, Rathi GS, Meena VD. 2014. Relative performance of oat (Avena sativa L.) varieties for their growth and seed yield. African J Agricult Res. 9(3):425–431. doi:10.5897/AJAR2013.8165.
  • Singh BD. 1993. Plant breeding. 5th ed. Ludhiana: Kalyani Publishers; p. 104.
  • Singh BD. 2000. Plant breeding: Principles and methods. New Delhi: Kalyani Publishers.
  • Singh BD. 2001. Plant breeding: Principles and methods. New Delhi: Kalyani Publishers.
  • Singh JM. 1999. Variability, heritability and genetic advance in oat (Avena sativa L.). Environ ECO. 17(4):1011–1012.
  • Singh RK, Chaudhary BD. 1977. Biometrical methods in quantitative genetic analysis. Biometrical methods in quantitative genetic analysis. New Delhi: Kalyani Publishers; p. 215–218.
  • Singh SB, Singh AK. 2009. Genetic variability, character association and path analysis for green fodder yield and its component characters in oat (Avena sativa). Progres Res. 4:159–162.
  • Singh SB, Singh AK. 2011. Genetic variability and divergence analysis in oat (Avena sativa) under rainfed environment of intermediate Himalayan Hills. Indian J Plant Genetic Resour. 24(1):56–61.
  • Sobhaninan N, Heidari B, Tahmasebi S, Dadkhodaie A, Lynne CM. 2019. Response of quantitative and physiological traits to drought stress in the SeriM82/Babax wheat population. Euphytica. 215:32. doi:10.1007/s10681-019-2357-x.
  • Steiner JL. 1986. Dryland grain sorghum water Use, light interception, and growth responses to planting geometry. Agron J. 78:720–726. doi:10.2134/agronj1986.00021962007800040032x.
  • Stevens EJ, Armstrong KW, Bezar HJ, Griffin WB, Hampton JB. 2004. Fodder oats: an overview. In: Fodder oat. A World Overview, Plant Production and Protection, FOA, Rome, Italy, Series No 33; p. 11–18.
  • Surje DT, De DK. 2014. Correlation coefficient study in oat (Avena sativa L.) genotypes for fodder and grain yield characters. J Agricult Sci Technol. 1(1):89–93.
  • Tahmasebi S, Heidari B, Pakniyat H, Reza MJK. 2014. Independent and combined effects of heat and drought stress in the Seri M82×Babax bread wheat population. Plant Breed. 133. doi:10.1111/pbr.12214.
  • Tanvi K. 2016. Evaluation and characterization of oat genotypes (Avena Spp.) for morphological, fodder and grain yield traits. MSc thesis. Haryana, India: College of Agriculture.
  • Tao F, Yue X, Yong-He Z, Ning C, Xin-Tan Z, Yi J, Neil CT, Feng-Min L. 2021. Reduced vegetative growth increases grain yield in spring wheat genotypes in the dryland farming region of North-West China. Agronomy. 11:663. doi:10.3390/agronomy11040663.
  • Temesgen D, Behailu M, Teklehaimanot H, Mulatu G, Kassahun T. 2022. Phenotypic variability, heritability and associations of agronomic and quality traits in cultivated Ethiopian Durum wheat (Triticum turgidum L. spp.) (Durum, Desf.). Agronomy. 12:1714.
  • Tessema A, Getinet K. 2020. Evaluation of oats (Avena sativa) genotypes for seed yield and yield components in the highlands of Gamo, southern Ethiopia. Ethiop J Agric Sci. 30(3):15–23.
  • Wagh VR. 2018. Genetic Diversity and path coefficient analysis in oat (Avena sativa L.). MSc thesis. Maharashtra, India: Department of agricultural botany.
  • Wondimu F, Firew M, Berhane L, Bettina IG. 2023. Genotype × environment interaction and yield stability in barley (Hordeum vulgare L.) genotypes in the central highland of Ethiopia. J Crop Sci Biotechnol. doi:10.1007/s12892-022-00166-0.
  • Yadav RK. 2000. Studies on genetic variability for some quantitative characters in rice (Oryza sativa L.). Advances in Agricultural Research. 13:205–207.