588
Views
0
CrossRef citations to date
0
Altmetric
Agriculture

Evaluating capability of two halophyte plants for phytoextraction of cadmium from contaminated soils

, &
Article: 2313206 | Received 05 Sep 2022, Accepted 13 Oct 2023, Published online: 20 Feb 2024

References

  • Adam G, Duncan H. 2002. Influence of diesel fuel on seed germination. Environ Pollut. 120(2):363–370. doi:10.1016/S0269-7491(02)00119-7.
  • Arabi Z, Homaee M, Asadi ME, Asadi Kapourchald S. 2017. Cadmium removal from Cd-contaminated soils using some natural and synthetic chelates for enhancing phytoextraction. Chem Ecol. 33(5):389–402. doi:10.1080/02757540.2017.1308501.
  • Azizian A, Amin S, Maftoun M, Emam Y, Noshadi M. 2011. Response of lettuce to Cd-enriched water and irrigation frequencies. Afr J Environ Sci Technol. 5(10):884–893.
  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML. 2001. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Funct Plant Biol. 28(6):497–504. doi:10.1071/PP00158.
  • Bohnert HJ, Nelson DE, Jensen RG. 1995. Adaptations to environmental stresses. Plant Cell. 7(7):1099. doi:10.2307/3870060.
  • Brus DJ, Li Z, Song J, Koopmans GF, Temminghoff EJ, Yin X, Ch Y, Zhang H, Luo Y, Japenga J. 2009. Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, PR China. J Environ Qual. 38(3):1126–1136. doi:10.2134/jeq2008.0228.
  • Chaabani S, Ch A-B, Ben Ahmed H, Chaabani A, Sebei A. 2017. Phytoremediation assessment of native plants growing on Pb–Zn mine site in Northern Tunisia. Environ Earth Sci. 76:585. doi:10.1007/s12665-017-6894-0.
  • Chen BC, Lai HY, Juang KW. 2012. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf. 80:393–400. doi:10.1016/j.ecoenv.2012.04.011.
  • Chiroma TM, Ebewele RO, Hymore FK. 2014. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int Refereed J Eng Sci. 3(2):1–9.
  • Cutright T, Gunda N, Kurt F. 2010. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation. 12(6):562–573. doi:10.1080/15226510903353146.
  • Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: a review. Environ Pollut. 98(1):29–36. doi:10.1016/S0269-7491(97)00110-3.
  • Dodangeh H, Rahimi G, Fallah M, Ebrahimi E. 2018. Investigation of heavy metal uptake by three types of ornamental plants as affected by application of organic and chemical fertilizers in contaminated soils. Environ Earth Sci. 77(12): 473. doi:10.1007/s12665-018-7620-2.
  • Eapen S, Singh S, SF D. 2007. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv. 25(5):442–451. doi:10.1016/j.biotechadv.2007.05.001.
  • Eisazadeh S, Asadi Kapourchal S, Homaee M, Noorhosseini SA, Damalas CA. 2019. Chive (Allium schoenoprasum L.) response as a phytoextraction plant in cadmium-contaminated soils. Environ Sci Pollut Res. 26(1): 152–160. doi:10.1007/s11356-018-3545-2.
  • Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F. 2010. Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. J Soils Sediments. 10(2):290–300. doi:10.1007/s11368-009-0114-9.
  • Fu S, Wei C, Xiao Y, Li L, Wu D. 2019. Heavy metals uptake and transport by native wild plants: implications for phytoremediation and restoration. Environ Earth Sci. 78:103. doi:10.1007/s12665-019-8103-9.
  • Fu Y, You S, Luo X. 2021. A review on the status and development of hyperaccumulator harvests treatment technology. In: IOP Conf. Ser.: Earth Environ. Sci. 634:012113. doi:10.1088/1755-1315/634/1/012113. IOP.
  • Garci-Caparros P, Ozturk M, Gul A, Batool TS, Pirasteh-Anosheh H, Unal BT, Altay V, Toderich KN. 2022. Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environ Exp Bot. 193:104666. doi:10.1016/j.envexpbot.2021.104666.
  • Gee GH, Bauder JW. 1986. Particle size analysis. In: Klute A, editor. Methods of soil analysis: physical properties. Madison: SSSA; p. 383–411.
  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. 2020. The effects of cadmium toxicity. Int J Environ Res Public Health. 17(11):3782. doi:10.3390/ijerph17113782.
  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. 2019. Heavy metal stress and responses in plants. Int J Environ Sci Technol. 16:1807–1828. doi:10.1007/s13762-019-02215-8.
  • Greman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil. 235:105–114. doi:10.1023/A:1011857303823.
  • Gupta PK. 2016. Soil, plant, water and fertilizer analysis, 2nd edn. New Delhi: Agrobios.
  • Henry JR. 2000. An overview of the phytoremediation of lead and mercury. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office; p. 1–31.
  • Jaiswal A, Verma A, Jaiswal P. 2018. Detrimental effects of heavy metals in soil, plants, and aquatic ecosystems and in humans. J Environ Pathol Toxicol Oncol. 37(3):183–197. doi:10.1615/JEnvironPatholToxicolOncol.2018025348.
  • Kabata-Pendias A. 2000. Trace elements in soils and plants. Boca Raton: CRC press.
  • Khodaverdiloo H, Han FX, Taghlidabad H, Karimi R, Moradi A, Kazery N, A J. 2020. Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation. Arid Land Res Manag. 34(4):361–391. doi:10.1080/15324982.2020.1746707.
  • Khodaverdiloo H, Homaee M. 2008. Modeling of cadmium and lead phytoextraction from contaminated soils. Polish J Soil Sci. 2:149–162.
  • Koller M, Saleh HM. 2018. Introductory chapter: introducing heavy metals. Heavy Metals. 1:3–11.
  • Li Y, Wang Y, Liu R, Shao L, Liu X, Han K, Song P. 2022. Variation of mercury fractionation and speciation in municipal sewage treatment plant: effects of mercury on the atmosphere. Environ Sci Pollut Res. 29:36475–36485. doi:10.1007/s11356-021-18103-z.
  • Majeed A, Muhammad Z, Siyar S. 2019. Assessment of heavy metal induced stress responses in pea (Pisum sativum L.). Acta Ecol Sin. 39(4):284–288. doi:10.1016/j.chnaes.2018.12.002.
  • Manousaki E, Kalogerakis N. 2011. Halophytes—an emerging trend in phytoremediation. Int J Phytoremediation. 13(10):959–969. doi:10.1080/15226514.2010.532241.
  • Munir N, Hasnain M, Roessner U, Abideen Z. 2022. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit Rev Environ Sci Technol. 52(12):2150–2196. doi:10.1080/10643389.2021.1877033.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Ozturk M, Altay V, Kucuk M, Yalçın IE. 2019. Trace elements in the soil-plant systems of copper mine areas – a case study from Murgul copper mine from the Black Sea region of Turkey. Phyton-Int J Exp Bot. 88(3):223–238.
  • Peris M, Micó C, Recatalá L, Sánchez R, Sánchez J. 2007. Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ. 378(1-2): 42-48. doi:10.1016/j.scitotenv.2007.01.030.
  • Rayment GE, Higginson FR. 1992. Australian laboratory handbook of soil and water chemical methods – Australian soil and land survey handbook. Melbourne and Sydney: Inkata Press.
  • Rowell DL. 1994. Soil science: methods and applications. London: Longman.
  • Saldarriaga JF, López JE, Diaz-Garcia L, Montoya-Ruiz C. 2023. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. Environ. Sci. Pollut. Res. 30:49498–49511. doi:10.1007/s11356-023-25501-y.
  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/technology. 13(5):468–474.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Biol. 49(1):643–668. doi:10.1146/annurev.arplant.49.1.643.
  • Schnoor JL. 1997. Phytoremediation: technology evaluation report TE-98-01. Pittsburgh.: Ground-Water Remediation Technologies Analysis Center (GWRTAC).
  • Sharma JK, Kumar N, Singh NP, Santal AR. 2023. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front. Plant Sci. 14:1076876. doi:10.3389/fpls.2023.1076876.
  • Sharma P, Dubey RSH. 2005. Lead toxicity in plants. Plant Physiol. 17:35–52.
  • Testa G, Corinzia SA, Cosentino SL, Ciaramella BR. 2023. Phytoremediation of cadmium-, lead-, and nickel-polluted soils by industrial hemp. Agron. 13(4):995. doi:10.3390/agronomy13040995.
  • Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91(5):503–527. doi:10.1093/aob/mcg058.
  • Tudoreanu L, Phillips CJC. 2004. Modeling cadmium uptake and accumulation in plants. Adv Agron. 84(4):121–157. doi:10.1016/S0065-2113(04)84003-3.
  • Walkley A, Black IA. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wuana RA, Okieimen FE. 2010. Phytoremediation potential of maize (Zea mays L.). A review. Afr J Gen Agric. 6(4):275–287.
  • Yang Y, Ch X, Wang F, Peng L, Zeng Q, Luo S. 2022. Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes. J Hazard Mater. 423(B):127183. doi:10.1016/j.jhazmat.2021.127183.
  • Zhang X, Sh Z, Xu X, Li T, Gong G, Jia Y, Li Y, Deng L. 2010. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J Hazard Mater. 180:303–308. doi:10.1016/j.jhazmat.2010.04.031.