706
Views
19
CrossRef citations to date
0
Altmetric
Articles

Current mechanistic perspectives on male reproductive toxicity induced by heavy metals

ORCID Icon & ORCID Icon

Reference

  • Carvalho CM, Zhang F, Lupski JR. Structural variation of the human genome: mechanisms, assays, and role in male infertility. Syst Biol Reprod Med. 2011;57(1-2):3–16. doi:10.3109/19396368.2010.527427.
  • Boivin J, Bunting L, Collins JA, et al. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–1512. doi:10.1093/humrep/dem046.
  • Jungwirth A, Giwercman A, Tournaye H, European Association of Urology Working Group on Male Infertility, et al. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62(2):324–332. doi:10.1016/j.eururo.2012.04.048.
  • Al-Ani NK, Al-Kawaz U, Saeed BT. Protective influence of zinc on reproductive parameters in male rat treated with cadmium. American Journal of Medicine and Medical Sciences. 2015;5(2):73–81.
  • Pandey G, Jain GC. A Review on toxic effects of aluminium exposure on male reproductive system and probable mechanisms of toxicity. International Journal of Toxicology and Applied Pharmacology. 2013;3(3):48–57.
  • Pizent A, Tariba B, Živković T. Reproductive toxicity of metals in men. Archives of Industrial Hygiene and Toxicology. 2012;63(Supplement-1):35–46. doi:10.2478/10004-1254-63-2012-2151.
  • Lee J, Lim KT. Inhibitory effect of plant-originated glycoprotein (27 kDa) on expression of matrix metalloproteinase-9 in cadmium chloride-induced BNL CL.2 cells. J Trace Elem Med Biol. 2011;25(4):239–246. doi:10.1016/j.jtemb.2011.08.142.
  • Sharma A. Male Infertility; Evidences, Risk Factors, Causes, Diagnosis and Management in Human. Ann. Clin. Lab. Res. 2017;5:188.
  • O'Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93(1):1–2. doi:10.1016/j.fertnstert.2009.10.045.
  • Ferlin A, Raicu F, Gatta V, et al. Male infertility: role of genetic background. Reprod Biomed Online. 2007a;14(6):734–745. doi:10.1016/S1472-6483(10)60677-3.
  • Kahraman S, Sahin Y, Yelke H, et al. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration. J Assist Reprod Genet. 2020;37(3):629–622. doi:10.1007/s10815-019-01673-w.
  • Krausz C, Rosta V. Chromosome abnormalities and the infertile male. Male and Sperm Factors That Maximize IVF Success. 2020;28.
  • Georgiou I, Syrrou M, Pardalidis N, et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J Androl. 2006;8(6):643–673. doi:10.1111/j.1745-7262.2006.00231.x.
  • Singh V, Pakhiddey R. Current scenario on genetic basis of infertility-A review. Acta Med Int. 2015;2(2):149. doi:10.5530/ami.2015.4.7.
  • Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353–368. https://doi.org/doi.org/10.3109/01480545.2012.710631 doi:10.3109/01480545.2012.710631.
  • Wirth JJ, Mijal RS. Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med. 2010;56(2):147–167. doi:10.3109/19396360903582216.
  • Mendiola J, Moreno JM, Roca M, et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health. 2011;10(1):6. doi:10.1186/1476-069X-10-6.
  • Oliveira H, Spanò M, Santos C, et al. Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol. 2009;28(4):550–555. doi:10.1016/j.reprotox.2009.08.001.
  • Hosni H, Selim O, Abbas M, et al. Semen quality and reproductive endocrinal function related to blood lead levels in infertile painters. Andrologia. 2013;45(2):120–127. doi:10.1111/j.1439-0272.2012.01322.x.
  • Pant N, Kumar G, Upadhyay AD, et al. Correlation between lead and cadmium concentration and semen quality. Andrologia. 2015;47(8):887–891. doi:10.1111/and.12342.
  • Batra N, Nehru B, Bansal MP. Influence of lead and zinc on rat male reproduction at 'biochemical and histopathological levels'. J Appl Toxicol. 2001;21(6):507–512. doi:10.1002/jat.796.
  • Sarath TS, Waghe P, Gupta P, et al. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol. 2014;280(3):443–454. doi: 10.1016/j.taap.2014.08.032Abdul et al., 2015
  • Abdul KS, Jayasinghe SS, Chandana EP, et al. Arsenic and human health effects: A review. Environ Toxicol Pharmacol. 2015;40(3):828–846. doi:10.1016/j.etap.2015.09.016.
  • Shen H, Xu W, Zhang J, et al. Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol. 2013;47(15):8843–8851. doi:10.1021/es402025n.
  • Ince S, Avdatek F, Demirel HH, et al. Ameliorative effect of polydatin on oxidative stress-mediated testicular damage by chronic arsenic exposure in rats . Andrologia. 2016;48(5):518–524. doi:10.1111/and.12472.
  • Ko EY, Sabanegh ES, Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518–1527. doi:10.1016/j.fertnstert.2014.10.020.
  • Guvvala PR, Sellappan S, Parameswaraiah RJ. Impact of arsenic (V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice. Environ Sci Pollut Res. 2016;23(18):18200–18210. doi:10.1007/s11356-016-6870-3.
  • Zeng Q, Yi H, Huang L, et al. Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice. Toxicology. 2019;411:122–132. doi:10.1016/j.tox.2018.09.010.
  • Bera AK, Rana T, Das S, et al. L-Ascorbate protects rat hepatocytes against sodium arsenite-induced cytotoxicity and oxidative damage. Hum Exp Toxicol. 2010;29(2):103–111. doi: 10.1177%2F0960327109357215
  • Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725–734. doi:10.1038/nri910.
  • Yadav S, Shi Y, Wang F, et al. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway. Toxicol Appl Pharmacol. 2010;244(3):263–272. doi:10.1016/j.taap.2010.01.001.
  • Kim YJ, Chung JY, Lee SG, et al. Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology. 2011;285(3):142–151. doi:10.1016/j.tox.2011.04.013.
  • Eleawa SM, Alkhateeb MA, Alhashem FH, et al. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. J Reprod Dev. 2014;60(2):115–127. doi:10.1262/jrd.2013-097.
  • Yen YP, Tsai KS, Chen YW, et al. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol. 2012;86(6):923–933. doi:10.1007/s00204-012-0864-9.
  • Chang HT, Chou CT, Chen IS, et al. Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca2+ homeostasis and ROS production in human breast cells. Toxicology. 2016;370:1–9. doi:10.1016/j.tox.2016.09.006.
  • Zeng Q, Yi H, Huang L, et al. Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. Environ Toxicol Pharmacol. 2018;63:84–91. doi:10.1016/j.etap.2018.08.012.
  • Luo Q, Li J, Cui X, et al. The effect of Lycium barbarum polysaccharides on the male rats' reproductive system and spermatogenic cell apoptosis exposed to low-dose ionizing irradiation. J Ethnopharmacol. 2014;154(1):249–258. doi:10.1016/j.jep.2014.04.013.
  • Yun Y, Hou L, Sang N. SO(2) inhalation modulates the expression of pro-inflammatory and pro-apoptotic genes in rat heart and lung . J Hazard Mater. 2011;185(1):482–488. doi:10.1016/j.jhazmat.2010.09.057.
  • Jung EB, Lee CS. Baicalein attenuates proteasome inhibition-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways . Eur J Pharmacol. 2014;730:116–124. doi:10.1016/j.ejphar.2014.02.039.
  • Telisman S, Cvitković P, Jurasović J, et al. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000;108(1):45–53. doi:10.1289/ehp.0010845.
  • Xu DX, Shen HM, Zhu QX, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2003;534(1-2):155–163. doi:10.1016/S1383-5718(02)00274-7.
  • Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–21. doi:10.1007/s00018-019-03253-8.
  • Thompson J, Bannigan J. Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol. 2008;25(3):304–315. doi:10.1016/j.reprotox.2008.02.001.
  • Flora SJ, Agrawal S. Arsenic, cadmium, and lead. In Reproductive and Developmental Toxicology. Academic Press; 2017:537–566. doi. 10.1016/B978-0-12-804239-7.00031-7
  • Fouad AA, Albuali WH, Jresat I. Simvastatin treatment ameliorates injury of rat testes induced by cadmium toxicity. Biol Trace Elem Res. 2013;153(1-3):269–278. doi:10.1007/s12011-013-9667-y.
  • Rinaldi M, Micali A, Marini H, et al. Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem. 2017;24(35):3879–3893. doi:10.2174/0929867324666170801101448.
  • Sivaprakasam C, Nachiappan V. Modulatory effect of cadmium on the expression of phospholipase A2 and proinflammatory genes in rat testis. Environ Toxicol. 2016;31(10):1176–1184. doi:10.1002/tox.22124.
  • Squadrito F, Micali A, Rinaldi M, et al. Polydeoxyribonucleotide, an adenosine-A2A receptor agonist, preserves blood testis barrier from cadmium-induced injury. Front Pharmacol. 2017;7:537. doi:10.3389/fphar.2016.00537.
  • Skipper A, Sims J, Yedjou C, et al. Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. IJERPH. 2016;13(1):88. doi:10.3390/ijerph13010088.
  • Angenard G, Muczynski V, Coffigny H, et al. Cadmium increases human fetal germ cell apoptosis. Environ Health Perspect. 2010;118(3):331–337. doi:10.1289/ehp.0900975.
  • EL‐Maraghy SA, Nassar NN. Modulatory effects of lipoic acid and selenium against cadmium-induced biochemical alterations in testicular steroidogenesis . J Biochem Mol Toxicol. 2011;25(1):15–25. doi:10.1002/jbt.20354.
  • Bu T, Mi Y, Zeng W, et al. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice . Anat Rec (Hoboken)). 2011; 294(3):520–526. doi:10.1002/ar.21317.
  • de Angelis C, Galdiero M, Pivonello C, et al. The environment and male reproduction: the effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol. 2017;73:105–127. doi:10.1016/j.reprotox.2017.07.021.
  • Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64(1):16–64. doi:10.1124/pr.110.002790.
  • Di Wu CJ, Khan FA, Jiao XF, et al. SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget. 2017;8(35):58430–58442. doi:10.18632/oncotarget.16915.
  • Bekheet S. Cadmium chloride rapidly alters both BTB tight junction proteins and germ cells in young rat testes. Egyptian Acad J Biol Sci. 2010;2(1):59–74. doi:10.21608/eajbsz.2010.15916.
  • Siu ER, Mruk DD, Porto CS, et al. Cadmium-induced testicular injury. Toxicol Appl Pharmacol. 2009a;238(3):240–249. doi:10.1016/j.taap.2009.01.028.
  • Prozialeck WC, Edwards JR, Nebert DW, et al. The vascular system as a target of metal toxicity. Toxicol Sci. 2008;102(2):207–218. doi:10.1093%2Ftoxsci%2Fkfm263
  • Brocato J, Costa M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit Rev Toxicol. 2013;43(6):493–514. doi:10.3109/10408444.2013.794769.
  • Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47. doi:10.1093/molehr/gap090.
  • Tian M, Bao H, Martin FL, et al. Association of DNA methylation and mitochondrial DNA copy number with human semen quality. Biol Reprod. 2014;91(4):101–101. doi:10.1095/biolreprod.114.122465.
  • Zhu H, Li K, Liang J, et al. Changes in the levels of DNA methylation in testis and liver of SD rats neonatally exposed to 5-aza-2'-deoxycytidine and cadmium. J Appl Toxicol. 2011;31(5):484–495. doi:10.1002/jat.1673.
  • Singh KP, Kumari R, Pevey C, et al. Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett. 2009;279(1):84–92. doi:10.1016/j.canlet.2009.01.023.
  • Mohanty AF, Farin FM, Bammler TK, et al. Infant sex-specific placental cadmium and DNA methylation associations. Environ Res. 2015;138:74–81. doi:10.1016/j.envres.2015.02.004.
  • Virani S, Rentschler KM, Nishijo M, et al. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere. 2016;145:284–290. doi:10.1016/j.chemosphere.2015.10.123.
  • Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–1307. doi:10.1016/j.cell.2013.02.012.
  • Luk AC, Gao H, Xiao S, et al. GermlncRNA: a unique catalogue of long non-coding RNAs and associated regulations in male germ cell development. Database (Oxford). 2015;2015:bav044. PMID:25982314. doi:10.1093%2Fdatabase%2Fbav044.
  • Liang M, Li W, Tian H, et al. Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis. Sci Rep. 2014;4:5966. doi:10.1038/srep05966.
  • Zhang C, Gao L, Xu EY. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. In Semin Cell Dev Biol. 2016; 59:110–117. Academic Press. doi:10.1016/j.semcdb.2016.06.013.
  • Tani H, Onuma Y, Ito Y, et al. Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells. PloS One. 2014;9(8):e106282. doi:10.1371/journal.pone.0106282.
  • Zhou Z, Liu H, Wang C, et al. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Sci Rep. 2015;5:15293. doi:10.1038/srep15293.
  • Thévenod F, Fels J, Lee WK, et al. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals. 2019;32(3):469–489. doi:10.1007/s10534-019-00176-6.
  • Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertility. 2018;19(2):69.
  • Walczak–Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 2013;66(1):60. doi: 10.5173%2Fceju.2013.01.art19
  • Aiba I, Hossain A, Kuo MT. Elevated GSH level increases cadmium resistance through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8. Mol Pharmacol. 2008;74(3):823–833. doi:10.1124/mol.108.046862.
  • Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73(18):3497–3506. doi:10.1007/s00018-016-2255-5.
  • Yu X, Hong S, Faustman EM. Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures. Toxicol Sci. 2008;104(2):385–396. doi:10.1093/toxsci/kfn087.
  • Benoff S, Auborn K, Marmar JL, et al. Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil Steril. 2008;89(2):e73. doi:10.1016/j.fertnstert.2007.12.035.
  • Hofer MA. Interactions between calcium and cAMP signaling. Curr Med Chem. 2012;19(34):5768–5773. doi:10.2174/092986712804143286.
  • Gunnarsson D, Nordberg G, Lundgren P, et al. Cadmium-induced decrement of the LH receptor expression and cAMP levels in the testis of rats. Toxicology. 2003;183(1-3):57–63. doi:10.1016/S0300-483X(02)00440-7.
  • El‐Magd MA, Kahilo KA, Nasr NE, et al. A potential mechanism associated with lead‐induced testicular toxicity in rats. Andrologia. 2017;49(9):e12750. doi:10.1111/and.12750.
  • García-Lestón J, Méndez J, Pásaro E, et al. Genotoxic effects of lead: an updated review. Environ Int. 2010;36(6):623–636. doi:10.1016/j.envint.2010.04.011.
  • Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr. 2014;82(2):73–80. doi:10.1159/000362414.
  • Mabrouk A, Ben HC. Thymoquinone supplementation reverses lead-induced oxidative stress in adult rat testes. Gen Physiol Biophys. 2015;34(1):65–72. PMID:25367764. doi:10.4149/gpb_2014022.
  • Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Crit Rev Toxicol. 2015;45(9):765–798. doi:10.3109/10408444.2015.1074159.
  • Mishra M, Acharya UR. Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol. 2004;18(2):173–178. doi:10.1016/j.jtemb.2004.03.007.
  • Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58. doi:10.2478/v10102-012-0009-2.
  • Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond, B, Biol Sci. 2010;365(1546):1517–1535. doi:10.1098/rstb.2009.0235.
  • Joseph A, Shur BD, Hess RA. Estrogen, efferent ductules, and the epididymis. Biol Reprod. 2011;84(2):207–217. doi:10.1095/biolreprod.110.087353.
  • Aaseth J, Hilt B, Bjørklund G. Mercury exposure and health impacts in dental personnel. Environ Res. 2018;164:65–69. doi:10.1016/j.envres.2018.02.019.
  • da Silva DA, Teixeira CT, Scarano WR, et al. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol. 2011;31(4):431–439. doi:10.1016/j.reprotox.2011.01.002.
  • Martinez CS, Escobar AG, Torres JG, et al. Chronic exposure to low doses of mercury impairs sperm quality and induces oxidative stress in rats. J Toxicol Environ Health Part A. 2014;77(1-3):143–154. doi:10.1080/15287394.2014.867202.
  • Cariccio VL, Samà A, Bramanti P, et al. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res. 2019;187(2):341–356. doi:10.1007/s12011-018-1380-4.
  • Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72. doi:10.2478/intox-2014-0009.
  • Dietrich GJ, Dietrich M, Kowalski RK, et al. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success. Aquat Toxicol. 2010;97(4):277–284. doi:10.1016/j.aquatox.2009.12.010.
  • El-Desoky GE, Bashandy SA, Alhazza IM, et al. Improvement of mercuric chloride-induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLoS One. 2013;8(3):e59177. doi:10.1371/journal.pone.0059177.
  • Lawrence DA, McCabe MJ. Immunomodulation by metals. Int Immunopharmacol. 2002;2(2-3):293–302. doi:10.1016/S1567-5769(01)00180-1.
  • Santarelli L, Bracci M, Mocchegiani E. In vitro and in vivo effects of mercuric chloride on thymic endocrine activity, NK and NKT cell cytotoxicity, cytokine profiles (IL-2, IFN-gamma, IL-6): role of the nitric oxide-L-arginine pathway . Int Immunopharmacol. 2006;6(3):376–389. doi:10.1016/j.intimp.2005.08.028.
  • Rao MV, Sharma PS. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod Toxicol. 2001;15(6):705–712. doi:10.1016/S0890-6238(01)00183-6.
  • Sharma AK, Kapadia AG, Fransis P, et al. Reversible effects of mercuric chloride on reproductive organs of the male mouse. Reprod Toxicol. 1996;10(2):153–159. doi:10.1016/0890-6238(95)02058-6.
  • Ge SQ, Zhao ZH, Cui TZ, et al. Small non-coding RNAs in mammalian male germ cells and their implications for male infertility. Andrology. 2015;4(150):2167–0250. doi:10.4172/2167-0250.1000150
  • Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci Usa. 2006;103(8):2746–2751. doi:10.1073/pnas.0511045103.
  • Khazaie Y, Esfahani MH. MicroRNA and male infertility: a potential for diagnosis. Int J Fertil Steril. 2014;8(2):113–118.
  • Khawar MB, Mehmood R, Roohi N. MicroRNAs: Recent insights towards their role in male infertility and reproductive cancers. Bosn J Basic Med Sci. 2019;19(1):31–42. doi:10.17305/bjbms.2018.3477.
  • Zhou JH, Zhou QZ, Yang JK, et al. MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients. Asian J Androl. 2017;19(5):591–595. doi:10.4103/1008-682X.185001.
  • Peng H, Wang X, Zhang P, et al. miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. Int J Clin Exp Pathol. 2015;8(2):2259–2266.
  • Bollati V, Marinelli B, Apostoli P, et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect. 2010;118(6):763–768. doi:10.1289/ehp.0901300.
  • Krauskopf J, Caiment F, van Veldhoven K, et al. The human circulating miRNome reflects multiple organ disease risks in association with short-term exposure to traffic-related air pollution. Environ Int. 2018;113:26–34. doi:10.1016/j.envint.2018.01.014.
  • Deng Q, Dai X, Feng W, et al. Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ Int. 2019;122:369–380. doi:10.1016/j.envint.2018.11.056.
  • Li X, Lv Y, Hao J, et al. Role of microRNA-4516 involved autophagy associated with exposure to fine particulate matter. Oncotarget. 2016;7(29):45385–45397. doi:10.18632/oncotarget.9978.
  • Sanders AP, Burris HH, Just AC, et al. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics. 2015;7(6):885–896. https://doi.org/doi.org/10.2217/epi.15.54 doi:10.2217/epi.15.54.
  • Kong AP, Xiao K, Choi KC, et al. Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin Chim Acta. 2012;413(13-14):1053–1057. doi:10.1016/j.cca.2012.02.014.
  • Wang C, Yang C, Chen X, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–1731. doi:10.1373/clinchem.2011.169714.
  • Wu W, Hu Z, Qin Y, et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod. 2012;18(10):489–497. doi:10.1093/molehr/gas022.
  • Krawetz SA, Kruger A, Lalancette C, et al. A survey of small RNAs in human sperm. Human Reproduction. 2011;26(12):3401–3412. doi:10.1093/humrep/der329.
  • Skaftnesmo KO, Edvardsen RB, Furmanek T, et al. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics. 2017;18(1):801. doi:10.1186/s12864-017-4205-5.
  • Kasimanickam VR, Kasimanickam RK, Dernell WS. Dysregulated microRNA clusters in response to retinoic acid and CYP26B1 inhibitor induced testicular function in dogs. PLoS One. 2014;9(6):e99433. doi:10.1371/journal.pone.0099433.
  • Zhou C, Li J, Li J, et al. Hsa-miR-137, hsa-miR-520e and hsa-miR-590-3p perform crucial roles in Lynch syndrome. Oncol Lett. 2016;12(3):2011–2017. doi:10.3892/ol.2016.4816.
  • Gu X, Xu Y, Xue WZ, et al. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis. 2019;10(9):1–6. doi:10.1038/s41419-019-1912-7.
  • Smrt RD, Szulwach KE, Pfeiffer RL, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28(6):1060–1070. https://doi.org/doi.org/10.1002/stem.431 doi:10.1002/stem.431.
  • Gao F, Zhang P, Zhang H, et al. Dysregulation of long noncoding RNAs in mouse testes and spermatozoa after exposure to cadmium. Biochem Biophys Res Commun. 2017;484(1):8–14.doi:10.1016/j.bbrc.2017.01.091.
  • Jiang GJ, Zhang T, An T, et al. Differential expression of long noncoding RNAs between sperm samples from diabetic and non-diabetic mice. PloS One. 2016;11(4):e0154028. doi:10.1371/journal.pone.0154028.
  • Gao M, Li C, Xu M, et al. LncRNA UCA1 attenuates autophagy-dependent cell death through blocking autophagic flux under arsenic stress. Toxicol Lett. 2018;284:195–204. doi:10.1016/j.toxlet.2017.12.009.
  • Li Y, Wang T, Li Y, et al. Identification of long-non coding RNA UCA1 as an oncogene in renal cell carcinoma. Mol Med Rep. 2016;13(4):3326–3334. doi:10.3892/mmr.2016.4894.
  • Wang H, Guan Z, He K, et al. LncRNA UCA1 in anti-cancer drug resistance. Oncotarget. 2017;8(38):64638–64650. doi:10.18632/oncotarget.18344.
  • Luo LF, Hou CC, Yang WX. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene. 2016;578(2):141–157. doi:10.1016/j.gene.2015.12.020.
  • Zhang P, Kang JY, Gou LT, et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 2015;25(2):193–207. doi:10.1038/cr.2015.4.
  • Hong Y, Wang C, Fu Z, et al. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci Rep. 2016;6:24229. doi:10.1038/srep24229.
  • Yang Q, Hua J, Wang L, et al. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PloS One. 2013;8(6):e66809. doi:10.1371/journal.pone.0066809.
  • Cui L, Fang L, Shi B, et al. Spermatozoa expression of piR-31704, piR-39888, and piR-40349 and their correlation to sperm concentration and fertilization rate after ICSI. Reprod Sci. 2018;25(5):733–739. doi:10.1177/1933719117725822.
  • Abu-Halima M, Galata V, Backes C, et al. MicroRNA signature in spermatozoa and seminal plasma of proven fertile men and in testicular tissue of men with obstructive azoospermia. Andrologia. 2020;52(2):1–11, e13503. doi:10.1111/and.13503.
  • Klastrup LK, Bak ST, Nielsen AL. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol Genet Genomics. 2019;294(1):1–1. doi:10.1007/s00438-018-1492-8.
  • Kumar K, Trzybulska D, Tsatsanis C, et al. Identification of circulating small non-coding RNAs in relation to male subfertility and reproductive hormones. Mol Cell Endocrinol. 2019;492:110443. doi:10.1016/j.mce.2019.05.002.
  • Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400. doi:10.1126/science.aad7977.
  • Rockett JC, Kim SJ. Biomarkers of reproductive toxicity. Cancer Biomark. 2005;1(1):93–108. doi:10.3233/CBM-2005-1110.
  • Perreault SD, Aitken RJ, Baker HG, et al. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. In: Advances in Male Mediated Developmental Toxicity. Boston, MA: Springer, 2003; 253–268. doi:10.1007/978-1-4419-9190-4_23.
  • Ramgir SS, Abilash VG. Impact of Smoking and Alcohol Consumption on Oxidative Status in Male Infertility and Sperm Quality. ijps. 2019;81(5):933–945. doi:10.36468/pharmaceutical-sciences.588.
  • Gholinezhad M, Aliarab A, Abbaszadeh-Goudarzi G, et al. Nitric oxide, 8-hydroxydeoxyguanosine, and total antioxidant capacity in human seminal plasma of infertile men and their relationship with sperm parameters. Clin Exp Reprod Med. 2020;47(1):54–60. doi:10.5653/cerm.2020.00423.
  • Timbrell JA. Urinary creatine as a biochemical marker of chemical induced testicular damage. Arhiv za Higijenu Rada i Toksikologiju. 2000;51(3).
  • Telišman S, Čolak B, Pizent A, et al. Reproductive toxicity of low-level lead exposure in men. Environ Res. 2007;105(2):256–266. doi:10.1016/j.envres.2007.05.011.
  • Sanders T, Liu Y, Buchner V, et al. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health. 2009;24(1):15–46. doi:10.1515/reveh.2009.24.1.15.
  • Fraczek M, Sanocka D, Kamieniczna M, et al. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29(1):85–92. doi:10.2164/jandrol.107.003319.
  • Moretti E, Cosci I, Spreafico A, et al. Semen characteristics and inflammatory mediators in infertile men with different clinical diagnoses. Int J Androl. 2009;32(6):637–646. doi:10.1111/j.1365-2605.2008.00911.x.
  • Martínez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9(1):102–107. doi:10.1111/j.1745-7262.2007.00238.x.
  • Matalliotakis IM, Cakmak H, Fragouli Y, et al. Increased IL‐18 levels in seminal plasma of infertile men with genital tract infections. Am J Reprod Immunol. 2006;55(6):428–433. doi:10.1111/j.1600-0897.2006.00380.x.
  • Dhooge W, Den Hond E, Koppen G, et al. Internal exposure to pollutants and sex hormone levels in Flemish male adolescents in a cross-sectional study: associations and dose–response relationships. J Expo Sci Environ Epidemiol. 2011;21(1):106–113. doi:10.1038/jes.2009.63.
  • Lewis RC, Meeker JD. Biomarkers of exposure to molybdenum and other metals in relation to testosterone among men from the United States National Health and Nutrition Examination Survey 2011-2012. Fertil Steril. 2015;103(1):172–178. doi:10.1016/j.fertnstert.2014.09.020.
  • Menke A, Guallar E, Shiels MS, et al. The association of urinary cadmium with sex steroid hormone concentrations in a general population sample of US adult men. BMC Public Health. 2008;8(1):72. doi:10.1186/1471-2458-8-72.
  • Kresovich JK, Argos M, Turyk ME. Associations of lead and cadmium with sex hormones in adult males. Environ Res. 2015;142:25–33. doi:10.1016/j.envres.2015.05.026.
  • El-Gendy K, Osman K, El-Din EE, et al. Role of biomarkers in the evaluation of cadmium and ethoprophos combination in male mice. Environ Toxicol Pharmacol. 2019;72:103267. doi:10.1016/j.etap.2019.103267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.