217
Views
5
CrossRef citations to date
0
Altmetric
Articles

Toxic impacts and industrial potential of graphene

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Sanchez VC, Jachak A, Hurt RH, et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34. doi:10.1021/tx200339h.
  • Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22(1):105–115. doi:10.1016/j.jfda.2014.01.009.
  • Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530–1534. doi:10.1126/science.1158877.
  • Rao CNR, Biswas K, Subrahmanyam KS, et al. Graphene the new nanocarbon. J Mater Chem. 2009;19(17):2457–2469. doi:10.1039/b815239j.
  • Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci. 2010;35(1):52–71. doi:10.1080/10408430903505036.
  • Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–2672. doi:10.1039/c0cs00079e.
  • Hu Q, Jiao B, Shi X, et al. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nanoscale. 2015;7(43):18025–18029. doi:10.1039/c5nr05401j.
  • Liang M, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2015;13(1):12. doi:10.1186/s12989-016-0120-1.
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi:10.1016/j.nbd.2009.07.030.
  • Mendonca MC, Soares ES, de Jesus MB, et al. Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study. J Nanobiotechnology. 2015;13:78. doi:10.1186/s12951-015-0143-z.
  • Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod. 2011;84(5):851–858. doi:10.1095/biolreprod.110.087452.
  • Liang S, Xu S, Zhang D, He J, Chu M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology. 2015;9(1):92–105. doi:10.3109/17435390.2014.893380.
  • Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology. 2016;10(4):391–412. doi:10.3109/17435390.2015.1073811.
  • Chen Y, Ren C, Ouyang S, Hu X, Zhou Q. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ Sci Technol. 2015;49(16):10147–10154. doi:10.1021/acs.est.5b02220.
  • Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol. 2014;27(2):159–168. doi:10.1021/tx400385x.
  • Kucki M, Aengenheister L, Diener L, et al. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity. 2D Mater. 2018;5(3):035014. doi:10.1088/2053-1583/aab9e2.
  • Syama S, Mohanan PV. Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int J Biol Macromol. 2016;86:546–555. doi:10.1016/j.ijbiomac.2016.01.116.
  • Duch M, Budinger G, Liang Y, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201–5207. doi:10.1021/nl202515a.
  • Beinke S, Ley S. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J. 2004;382(Pt 2):393–409. doi:10.1042/BJ20040544.
  • Chen G, Yang H, Lu Y, et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012;33(27):6559–6569. doi:10.1016/j.biomaterials.2012.05.064.
  • Wen KP, Chen YC, Chuang CH, et al. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J Appl Toxicol. 2015;35(10):1211–1218. doi:10.1002/jat.3187.
  • Park EJ, Lee SJ, Lee K, et al. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J Appl Toxicol. 2017;37(3):296–309. doi:10.1002/jat.3361.
  • Singh SK, Singh MK, Nayak MK, et al. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano. 2011;5(6):4987–4996. doi:10.1021/nn201092p.
  • Sawosz E, Jaworski S, Kutwin M, et al. Toxicity of pristine graphene in experiments in a chicken embryo model. Int J Nanomed. 2014;9(1):3913–3922.
  • Liu XT, Mu XY, Wu XL, et al. Toxicity of multiwalled carbon nanotubes, graphene oxide, and reduced graphene oxide tozebrafish embryos. Biomed Environ Sci. 2014;27(9):676–683.
  • Chen Y, Hu X, Sun J, et al. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. 2016;10(1):42–52. doi:10.3109/17435390.2015.1005032.
  • Fu C, Liu T, Li L, et al. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials. 2015;40:23–31. doi:10.1016/j.biomaterials.2014.11.014.
  • Ding Z, Zhang Z, Ma H, et al. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin. ACS Appl Mater Interfaces. 2014;6(22):19797–19807. doi:10.1021/am505084s.
  • Ge Z, Yang L, Xiao F, et al. Graphene Family Nanomaterials: properties and Potential Applications in Dentistry. Int J Biomater. 2018;2018:1539678–12. doi:10.1155/2018/1539678.
  • Liao C, Li Y, Tjong SC. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci . 2018;19(11):3564. doi:10.3390/ijms19113564.
  • Dasari Shareena TP, McShan D, Dasmahapatra AK, et al. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 2018;10(3):53. doi:10.1007/s40820-018-0206-4.
  • Yu W, Sisi L, Haiyan Y, et al. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 2020;10(26):15328–15345. doi:10.1039/D0RA01068E.
  • Tiwari SK, Sahoo S, Wang N, et al. Graphene research and their outputs: status and prospects. J Sci Adv Mater Devices. 2020;5(1):10–29. doi:10.1016/j.jsamd.2020.01.006.
  • Lu YJ, Lin CW, Yang HW, et al. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon N. Y. 2014;74:83–95., doi:10.1016/j.carbon.2014.03.007.
  • Kavinkumar T, Varunkumar K, Ravikumar V, et al. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J Colloid Interface Sci. 2017;505:1125–1133. doi:10.1016/j.jcis.2017.07.002.
  • Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–6831. doi:10.1021/ja2010175.
  • Liu Z, Robinson JT, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–10877. doi:10.1021/ja803688x.
  • Wang C, Ravi S, Garapati US, et al. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B. 2013;1(35):4396–4405. doi:10.1039/C3TB20452A.
  • Nasirzadeh N, Azari MR, Rasoulzadeh Y, et al. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health. 2019;35(1):79–87. doi:10.1177/0748233718817180.
  • Gollavelli G, Ling YC. Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials. 2012;33(8):2532–2545. doi:10.1016/j.biomaterials.2011.12.010.
  • Zeng Z, Yang K, Lin D. The effect of water hardness on the toxicity of graphene oxide to bacteria in synthetic surface waters. Aquat Toxicol. 2019;216:105323doi:10.1016/j.aquatox.2019.105323.
  • Chng ELK, Chua CK, Pumera M. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale. 2014;6(18):10792–10797. doi:10.1039/c4nr03608e.
  • Chang Y, Yang ST, Liu JH, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200(3):201–210. doi:10.1016/j.toxlet.2010.11.016.
  • Das S, Singh S, Singh V, et al. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Charact. 2013;30(2):148–157. doi:10.1002/ppsc.201200066.
  • Xu M, Zhu JQ, Wang FF, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016;10(3):3267–3281. doi:10.1021/acsnano.6b00539.
  • Mu Q, Su G, Li L, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces. 2012;4(4):2259–2266. doi:10.1021/am300253c.
  • Matesanz MC, Vila M, Feito MJ, et al. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations . Biomaterials. 2013;34(5):1562–1569. doi:10.1016/j.biomaterials.2012.11.001.
  • Liao KH, Lin YS, Macosko CW, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011;3(7):2607–2615. doi:10.1021/am200428v.
  • Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6(1):8–8. doi:10.1186/1556-276X-6-299.
  • Zhang D, Zhang Z, Liu Y, et al. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials. 2015;68:100–113. doi:10.1016/j.biomaterials.2015.07.060.
  • Wu Q, Yin L, Li X, et al. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale. 2013;5(20):9934–9943. doi:10.1039/c3nr02084c.
  • Li B, Yang J, Huang Q, et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013;5(4):e44–e44. doi:10.1038/am.2013.7.
  • Li Y, Wang Y, Tu L, et al. Sub-acute toxicity study of graphene oxide in the Sprague-Dawley rat. Int J Environ Res Public Health. 2016;13(11):1149. doi:10.3390/ijerph13111149.
  • Wang D, Zhu L, Chen JF, et al. Can graphene quantum dots cause DNA damage in cells? Nanoscale. 2015;7(21):9894–9901. doi:10.1039/c5nr01734c.
  • Liu Y, Luo Y, Wu J, et al. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep. 2013;3:3469. doi:10.1038/srep03469.
  • Magdolenova Z, Collins A, Kumar A, et al. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8(3):233–278. doi:10.3109/17435390.2013.773464.
  • Golbamaki N, Rasulev B, Cassano A, et al. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale. 2015;7(6):2154–2198. doi:10.1039/c4nr06670g.
  • Akhavan O, Ghaderi E, Akhavan A. A size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33(32):8017–8025. doi:10.1016/j.biomaterials.2012.07.040.
  • Ren H, Wang C, Zhang J, et al. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano. 2010;4(12):7169–7174. doi:10.1021/nn101696r.
  • Chatterjee N, Yang J, Choi J. Differential genotoxic and epigenotoxic effects of graphene family nanomaterials (GFNs) in human bronchial epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2016;798–799:1–10. doi:10.1016/j.mrgentox.2016.01.006.
  • Zhao Y, Wu Q, Wang D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials. 2016;79:15–24. doi:10.1016/j.biomaterials.2015.11.052.
  • Lammel T, Boisseaux P, Fernández-Cruz M-L, Navas JM. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol. 2013;10(1):27. doi:10.1186/1743-8977-10-27.
  • Park E-J, Lee G-H, Han BS, et al. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol. 2015;89(9):1557–1568. doi:10.1007/s00204-014-1303-x.
  • Zhang W, Wang C, Li Z, et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater Weinheim. 2012;24(39):5391–5397. doi:10.1002/adma.201202678.
  • Li Y, Liu Y, Fu Y, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33(2):402–411. doi:10.1016/j.biomaterials.2011.09.091.
  • Ou L, Lin S, Song B, et al. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine. 2017;12:6633–6646. doi:10.2147/IJN.S140526.
  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–776. doi:10.1038/35037710.
  • Vallabani NV, Mittal S, Shukla RK, et al. Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol. 2011;7(1):106–107. doi:10.1166/jbn.2011.1224.
  • Reshma SC, Syama S, Mohanan PV. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: a comparative in vitro study. Colloids Surf B Biointerfaces. 2016;140:104–116. doi:10.1016/j.colsurfb.2015.12.030.
  • Chatterjee N, Eom HJ, Choi J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials. 2014;35(4):1109–1127. doi:10.1016/j.biomaterials.2013.09.108.
  • Kim JK, Shin JH, Lee JS, et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology. 2016;10(7):891–901. doi:10.3109/17435390.2015.1133865.
  • Chen GY, Chen CL, Tuan HY, et al. Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo. Adv Healthc Mater. 2014;3(9):1486–1495. doi:10.1002/adhm.201300591.
  • Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253–1257. doi:10.1038/nature06421.
  • Sasidharan A, Swaroop S, Chandran P, et al. Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells. Nanomedicine. 2016;12(5):1347–1355. doi:10.1016/j.nano.2016.01.014.
  • Tan X, Feng L, Zhang J, et al. Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl Mater Interfaces. 2013;5(4):1370–1377. doi:10.1021/am302706g.
  • Zhao F, Meng H, Yan L, et al. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci Bull. 2015;60(1):3–20. doi:10.1007/s11434-014-0700-0.
  • Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach and lettuce. Carbon. 2011;49(12):3907–3919. doi:10.1016/j.carbon.2011.05.029.
  • Ahmed F, Rodrigues DF. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J Hazard Mater. 2013;256–257:33–39. doi:10.1016/j.jhazmat.2013.03.064.
  • Souza JP, Venturini FP, Santos F, Zucolotto V. Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere. 2018;190:218–224. doi:10.1016/j.chemosphere.2017.10.018.
  • Castro VL, Clemente Z, Jonsson C, et al. Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid. Environ Toxicol Chem. 2018;37(7):1998–2012. doi:10.1002/etc.4145.
  • Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B. 2014;2(37):6354–6362. doi:10.1039/C4TB00976B.
  • Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15–28. doi:10.2147/NSA.S101818.
  • Cohen-Tanugi D, Grossman JC. Water permeability of nanoporusgraphen at realistic pressures for reverse osmosis desalination. J Chem Phys. 2014;141(7):074704. doi:10.1063/1.4892638.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12(7):3602–3608. doi:10.1021/nl3012853.
  • Nellore BPV, Kanchanapally R, Pedraza F, et al. Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl Mater Interfaces. 2015;7(34):19210–19218. doi:10.1021/acsami.5b05012.
  • Banerjee AK. Prospects and challenges of graphene-based nanomaterials in nanomedicine. Glob. J. Nanomed. 2016;1(1):1–9. doi:10.19080/GJN.2016.01.555552.
  • Yin F, Hu K, Chen Y, et al. SiRNA delivery with PEGylated Graphene Oxide Nanosheets for combined photothermal and Genetherapy for Pancreatic Cancer. Theranostics. 2017;7(5):1133–1148. doi:10.7150/thno.17841.
  • Shen H, Zhang L, Liu M, et al. Biomedical applications of graphene. Theranostics. 2012;2(3):283–294. doi:10.7150/thno.3642.
  • Reina G, Gonzalez-Dominguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400–4416. doi:10.1039/c7cs00363c.
  • Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41(6):2283–2307. doi:10.1039/c1cs15270j.
  • Ryoo SR, Kim YK, Kim MH, et al. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies . ACS Nano. 2010;4(11):6587–6598. doi:10.1021/nn1018279.
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells . ACS Nano. 2011;5(6):4670–4678. doi:10.1021/nn200500h.
  • Yang Y, Asiri A, Tang Z, et al. Graphene based materials for biomedical applications. Mater Today. 2013;16(10):365–373. doi:10.1016/j.mattod.2013.09.004.
  • Zhang W, Guo ZY, Huang DQ, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011;32(33):8555–8561. doi:10.1016/j.biomaterials.2011.07.071.
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–5736. doi:10.1021/nn101390x.
  • Liu L, Liu J, Wang Y, et al. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem. 2011;35(7):1418. doi:10.1039/c1nj20076c.
  • West JD, Marnett LJ. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol. 2006;19(2):173–194. doi:10.1021/tx050321u.
  • Li J, Wang G, Zhu H, et al. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep. 2014;4:4359. doi:10.1038/srep04359.
  • Mejías Carpio IE, Santos CM, Wei X, et al. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012;4(15):4746–4756. doi:10.1039/c2nr30774j.
  • Liu S, Hu M, Zeng TH, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir. 2012;28(33):12364–12372. doi:10.1021/la3023908.
  • Tabish TA. Graphene-based materials: the missing piece in nanomedicines? Biochem Biophys Res Commun. 2018;504(4):686–689. doi:10.1016/j.bbrc.2018.09.029.
  • Mohammed H, Kumar A, Bekyarova E, et al. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. a scope review. Front Bioeng Biotechnol. 2020;8:465. doi:10.3389/fbioe.2020.00465.
  • Singh Z, Singh R. Toxicity of graphene based nanomaterials towards different bacterial strains: a comprehensive review. Am J Life Sci. 2017;5(3–1):1–9.
  • Kumar P, Huo P, Zhang R, et al. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9(5):737. doi:10.3390/nano9050737.
  • Priyadarsini S, Mohanty S, Mukherjee S, et al. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem. 2018;8(2):123–137. doi:10.1007/s40097-018-0265-6.
  • Hu WB, Peng C, Luo WJ, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4(7):4317–4323. doi:10.1021/nn101097v.
  • Kurantowicz N, Sawosz E, Jaworski S, et al. Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res Lett. 2015;10(1):1–12., doi:10.1186/s11671-015-0749-y.
  • Liu S, Zeng TH, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–6980. doi:10.1021/nn202451x.
  • Xu W, Xie W, Huang X, et al. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem. 2017;221:267–277. doi:10.1016/j.foodchem.2016.10.054.
  • Cai X, Tan S, Yu A, et al. Sodium 1-naphthalenesulfonate functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity. Chemistry- An Asian J. 2012;7(7):1664–1670.
  • Yang Z, Sun C, Wang L, et al. Novel Poly(L-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. J Colloid Interface Sci. 2017;507:344–352. doi:10.1016/j.jcis.2017.08.013.
  • Huang Y, Lu Y, Chen J. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. J Magn Magn Mater. 2017;427:34–40. doi:10.1016/j.jmmm.2016.10.042.
  • Ma N, Liu J, He W, et al. Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J Colloid Interface Sci. 2017;490:598–607. doi:10.1016/j.jcis.2016.11.097.
  • Lei H, Xie M, Zhao Y, et al. Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceram Int. 2016;42(15):17798–17805. doi:10.1016/j.ceramint.2016.08.108.
  • Zhang H, Yan T, Xu S, et al. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Mater Sci Eng C Mater Biol Appl. 2017;73:144–151. doi:10.1016/j.msec.2016.12.072.
  • Choi SY, Baek SH, Chang SJ, et al. Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens Bioelectron. 2017;93:267–273. doi:10.1016/j.bios.2016.08.094.
  • Taghioskoui M. Trends in graphene research. Mater Today. 2009;12(10):34–37. doi:10.1016/S1369-7021(09)70274-3.
  • https://www.marketsandmarkets.com/PressReleases/graphene.asp.
  • Ren W, Cheng HM. The global growth of graphene. Nat Nanotechnol. 2014;9(10):726–730. doi:10.1038/nnano.2014.229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.