661
Views
0
CrossRef citations to date
0
Altmetric
Articles

The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes

ORCID Icon, , , , , , , , & show all

References

  • Walb MC, Black PJ, Payne VS, Munley MT, Willey JS. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading. Life Sci Space Res (Amst). 2015;6:10–14. doi:10.1016/j.lssr.2015.05.002.
  • Tahimic CGT, Globus RK. Redox signaling and its impact on skeletal and vascular responses to spaceflight. Int J Mol Sci. 2017;18(10), 2153
  • Stepanek J, Blue RS, Parazynski S. Space medicine in the era of civilian spaceflight. N Engl J Med. 2019;380(11):1053–1060. doi:10.1056/NEJMra1609012.
  • Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: a comprehensive review of animal studies. Life Sci Space Res (Amst)). 2019;21:1–21. doi:10.1016/j.lssr.2019.02.004.
  • Blue RS, Chancellor JC, Suresh R, et al. Challenges in clinical management of radiation-induced illnesses during exploration spaceflight. Aerosp Med Hum Perform. 2019;90(11):966–977. doi:10.3357/AMHP.5370.2019.
  • da Silveira WA, Fazelinia H, Rosenthal SB, et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell. 2020;183(5):1185–1201 e1120. doi:10.1016/j.cell.2020.11.002.
  • Weber J, Javelle F, Klein T, et al. Neurophysiological, neuropsychological, and cognitive effects of 30 days of isolation. Exp Brain Res. 2019;237(6):1563–1573. doi:10.1007/s00221-019-05531-0.
  • Petit G, Cebolla AM, Fattinger S, et al. Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS. NPJ Microgravity. 2019;5(1):10. doi:10.1038/s41526-019-0069-0.
  • Pendergraft JG, Carter DR, Tseng S, Landon LB, Slack KJ, Shuffler ML. Learning from the past to advance the future: the adaptation and resilience of NASA's spaceflight multiteam systems across four eras of spaceflight. Front Psychol. 2019;10:1633.
  • Basner M, Dinges DF, Mollicone DJ, et al. Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to mars. PloS One. 2014;9(3):e93298 doi:10.1371/journal.pone.0093298.
  • Mairesse O, MacDonald-Nethercott E, Neu D, et al. Preparing for mars: human sleep and performance during a 13 month stay in Antarctica. Sleep. 2019;1;42(1)doi:10.1093/sleep/zsy206.
  • Gonfalone A. Sleep on manned space flights: Zero gravity reduces sleep duration. Pathophysiology. 2016;23(4):259–263. doi:10.1016/j.pathophys.2016.08.003.
  • Brainard GC, Barger LK, Soler RR, Hanifin JP. The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Curr Opin Pulm Med. 2016;22(6):535–544. doi:10.1097/MCP.0000000000000329.
  • Lang T, Van Loon J, Bloomfield S, et al. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity. 2017;3:8 doi:10.1038/s41526-017-0013-0.
  • Lloyd SA, Morony SE, Ferguson VL, et al. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562–572. doi:10.1016/j.bone.2015.08.021.
  • Shirazi-Fard Y, Metzger CE, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Moderate intensity resistive exercise improves metaphyseal cancellous bone recovery following an initial disuse period, but does not mitigate decrements during a subsequent disuse period in adult rats. Bone. 2014;66:296–305. doi:10.1016/j.bone.2014.06.005.
  • Smith RC, Cramer MS, Mitchell PJ, et al. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength. PloS One. 2020;15(4):e0230818 doi:10.1371/journal.pone.0230818.
  • Burkhart K, Allaire B, Bouxsein ML. Negative effects of long-duration spaceflight on paraspinal muscle morphology. Spine (Phila Pa 1976). 2019;44(12):879–886. doi:10.1097/BRS.0000000000002959.
  • DeLong A, Friedman MA, Tucker SM, et al. Protective effects of controlled mechanical loading of bone in C57BL6/J mice subject to disuse. JBMR Plus. 2020;4(3):e10322. doi:10.1002/jbm4.10322.
  • Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018;14(4):229–245. doi:10.1038/nrrheum.2018.37.
  • Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–453. doi:10.1016/j.bone.2008.11.014.
  • Belavy DL, Adams M, Brisby H, et al. Disc herniations in astronauts: What causes them, and what does it tell us about herniation on earth? Eur Spine J. 2016;25(1):144–154. doi:10.1007/s00586-015-3917-y.
  • Johnston SL, Campbell MR, Scheuring R, Feiveson AH. Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med. 2010;81(6):566–574. doi:10.3357/asem.2427.2010.
  • Bailey JF, Miller SL, Khieu K, et al. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 2018;18(1):7–14. doi:10.1016/j.spinee.2017.08.261.
  • Chang DG, Healey RM, Snyder AJ, et al. Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station. Spine (Phila Pa 1976). 2016;41(24):1917–1924. doi:10.1097/BRS.0000000000001873.
  • Shen M, Frishman WH. Effects of spaceflight on cardiovascular physiology and health. Cardiol Rev. 2019;27(3):122–126. doi:10.1097/CRD.0000000000000236.
  • Lee AG, Mader TH, Gibson CR, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity. 2020;6(1):7. doi:10.1038/s41526-020-0097-9.
  • Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985)). 2002;92(4):1367–1377. doi:10.1152/japplphysiol.00969.2001.
  • Willey JS, Kwok AT, Moore JE, et al. Spaceflight-relevant challenges of radiation and/or reduced weight bearing cause arthritic responses in knee articular cartilage. Radiat Res. 2016;186(4):333–344. doi:10.1667/RR14400.1.
  • Knox M, Fluckey JD, Bennett P, Peterson CA, Dupont-Versteegden EE. Hindlimb unloading in adult rats using an alternative tail harness design. Aviat Space Environ Med. 2004;75(8):692–696.
  • Farley A, Gnyubkin V, Vanden-Bossche A, et al. Unloading-induced cortical bone loss is exacerbated by low-dose irradiation during a simulated deep space exploration mission. Calcif Tissue Int. 2020;107(2):170–179. doi:10.1007/s00223-020-00708-0.
  • Colaianni G, Mongelli T, Cuscito C, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7(1):2811 doi:10.1038/s41598-017-02557-8.
  • Wang J, Wang X, Feng W. Reloading promotes recovery of disuse muscle loss by inhibiting TGFβ pathway activation in rats after hind limb suspension. Am J Phys Med Rehabil. 2017;96(6):430–437. doi:10.1097/PHM.0000000000000617.
  • Lloyd SA, Lang CH, Zhang Y, et al. Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res. 2014;29(5):1118–1130. doi:10.1002/jbmr.2113.
  • Lloyd SA, Bandstra ER, Willey JS, et al. Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: a model of long-duration spaceflight. Bone. 2012;51(4):756–764. doi:10.1016/j.bone.2012.07.001.
  • Tahimic CGT, Paul AM, Schreurs AS, et al. Influence of social isolation during prolonged simulated weightlessness by hindlimb unloading. Front Physiol. 2019;10:1147 doi:10.3389/fphys.2019.01147.
  • Chowdhury P, Long A, Harris G, Soulsby ME, Dobretsov M. Animal model of simulated microgravity: a comparative study of hindlimb unloading via tail versus pelvic suspension. Physiol Rep. 2013;1(1):e00012 doi:10.1002/phy2.12.
  • Summers SM, Hayashi Y, Nguyen SV, Nguyen TM, Purdy RE. Hindlimb unweighting induces changes in the p38MAPK contractile pathway of the rat abdominal aorta. J Appl Physiol (1985)). 2009;107(1):121–127. doi:10.1152/japplphysiol.00210.2009.
  • Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985)). 2016;120(10):1196–1206. doi:10.1152/japplphysiol.00997.2015.
  • Piet J, Hu D, Baron R, Shefelbine SJ. Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading. Bone. 2019;120:487–494. doi:10.1016/j.bone.2018.12.017.
  • Ma X, Lv J, Sun X, et al. Naringin ameliorates bone loss induced by sciatic neurectomy and increases Semaphorin 3A expression in denervated bone. Sci Rep. 2016;6:24562 doi:10.1038/srep24562.
  • Bateman TA, Dunstan CR, Lacey DL, Ferguson VL, Ayers RA, Simske SJ. Osteoprotegerin ameliorates sciatic nerve crush induced bone loss. J Orthop Res. 2001;19(4):518–523. doi:10.1016/S0736-0266(00)00057-7.
  • Vegger JB, Nielsen ES, Bruel A, Thomsen JS. Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats. Bone. 2014;66:287–295. doi:10.1016/j.bone.2014.06.020.
  • Khajuria DK, Disha C, Razdan R, Mahapatra DR, Vasireddi R. Prophylactic effects of propranolol versus the standard therapy on a new model of disuse osteoporosis in rats. Sci Pharm. 2014;82(2):357–374. doi:10.3797/scipharm.1310-06.
  • Wagner EB, Granzella NP, Saito H, Newman DJ, Young LR, Bouxsein ML. Partial weight suspension: a novel murine model for investigating adaptation to reduced musculoskeletal loading. J Appl Physiol (1985). 2010;109(2):350–357. doi:10.1152/japplphysiol.00014.2009.
  • Semple C, Riveros D, Nagy JA, Rutkove SB, Mortreux M. Partial weight-bearing in female rats: proof of concept in a martian-gravity analog. Front Physiol. 2020;11:302.
  • Mortreux M, Riveros D, Bouxsein ML, Rutkove SB. Mimicking a Space Mission to Mars Using Hindlimb Unloading and Partial Weight Bearing in Rats. J Vis Exp. 2019;(146)
  • Mortreux M, Nagy JA, Ko FC, Bouxsein ML, Rutkove SB. A novel partial gravity ground-based analog for rats via quadrupedal unloading. J Appl Physiol. (1985)). 2018;125(1):175–182. doi:10.1152/japplphysiol.01083.2017.
  • Mortreux M, Rosa-Caldwell ME. Approaching gravity as a continuum using the rat partial weight-bearing model. Life (Basel). 2020;10(10):235. doi:10.3390/life10100235.
  • Ko FC, Mortreux M, Riveros D, Nagy JA, Rutkove SB, Bouxsein ML. Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. NPJ Microgravity. 2020;6:15 doi:10.1038/s41526-020-0105-0.
  • Mortreux M, Ko FC, Riveros D, Bouxsein ML, Rutkove SB. Longitudinal time course of muscle impairments during partial weight-bearing in rats. NPJ Microgravity. 2019;5:20 doi:10.1038/s41526-019-0080-5.
  • Swift JM, Lima F, Macias BR, et al. Partial weight bearing does not prevent musculoskeletal losses associated with disuse. Medicine and Science in Sports and Exercise. 2013;45(11):2052–2060.
  • Mortreux M, Riveros D, Semple C, Bouxsein ML, Rutkove SB. The partial weight-bearing rat model using a pelvic harness does not impact stress or hindlimb blood flow. Acta Astronaut (UK). 2020;168:249–255. doi:10.1016/j.actaastro.2019.12.024.
  • Mortreux M, Riveros D, Bouxsein ML, Rutkove SB. A Moderate Daily Dose of Resveratrol mitigates muscle deconditioning in a martian gravity analog. Front Physiol. 2019;10:899.
  • Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using electrical impedance myography as a biomarker of muscle deconditioning in rats exposed to micro- and partial-gravity analogs. Front Physiol. 2020;11:557796.
  • Chancellor J, Scott G, Sutton J. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life (Basel)). 2014;4(3):491–510. doi:10.3390/life4030491.
  • Chancellor JC, Blue RS, Cengel KA, et al. Limitations in predicting the space radiation health risk for exploration astronauts. Npj Microgravity. 2018;4(1):8– 11. doi:10.1038/s41526-018-0043-2.
  • Cucinotta FA, Kim M-HY, Ren L. Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas. 2006;41(9-10):1173–1185. doi:10.1016/j.radmeas.2006.03.011.
  • Cucinotta FA, Schimmerling W, Wilson JW, et al. Space radiation cancer risk projections for exploration missions: uncertainty reduction and mitigation. Nasa Jsc-29295. 2001;4–75.
  • Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 2006;7(5):431–435. doi:10.1016/S1470-2045(06)70695-7.
  • Chancellor JC, Guetersloh SB, Blue RS, Cengel KA, Ford JR, Katzgraber HG. Targeted Nuclear spallation from moderator block design for a ground-based space radiation analog. arXiv:1706.02727v2 2017;
  • Blue RS, Chancellor JC, Antonsen EL, Bayuse TM, Daniels VR, Wotring VE. Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. Npj Microgravity. 2019;5(1):15– 19. doi:10.1038/s41526-019-0076-1.
  • Zhang S, Wimmer-Schweingruber RF, Yu J, et al. First measurements of the radiation dose on the lunar surface. Sci Adv. 2020;6(39):eaaz1334. doi:10.1126/sciadv.aaz1334.
  • NCRP. Guidance on radiation received in space activities. NCRP Report No. 98; 1988.
  • Wilson JW, Cucinotta F, Shinn J, et al. Shielding from solar particle event exposures in deep space. Radiat Meas. 1999;30(3):361–382. doi:10.1016/S1350-4487(99)00063-3.
  • Kim M, Wilson J, Cucinotta F, et al. Contribution of high charge and energy (HZE) Ions during solar-particle event of September 29. 1989.
  • Kim M-HY, De Angelis G, Cucinotta FA. Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronaut (UK). 2011;68(7-8):747–759. doi:10.1016/j.actaastro.2010.08.035.
  • Hu S, Cucinotta FA. Characterization of the radiation-damaged precursor cells in bone marrow based on modeling of the peripheral blood granulocytes response. Health Phys. 2011;101(1):67–78. doi:10.1097/HP.0b013e31820dba65.
  • Cucinotta FA, Durante M. Risk of radiation carcinogenesis. Human health and performance risks of space exploration missions. Houston: National Aeronautics and Space Administration. 2009. p. 119–170. NASA SP-2009-3405.
  • NCRP Report 153. Information Needed to Make Radiation Protection Recommendations for Space Missions beyond Low-Earth Orbit. National Council on Radiation Protection and Measurments. 2006.
  • Mao XW, Boerma M, Rodriguez D, et al. Combined Effects of Low-Dose Proton Radiation and Simulated Microgravity on the Mouse Retina and the Hematopoietic System. Radiat Res. 2019;192(3):241–250. doi:10.1667/RR15219.1.
  • Krause AR, Speacht TL, Zhang Y, Lang CH, Donahue HJ. Simulated space radiation sensitizes bone but not muscle to the catabolic effects of mechanical unloading. PloS One. 2017;12(8):e0182403 doi:10.1371/journal.pone.0182403.
  • Prisby RD, Alwood JS, Behnke BJ, et al. Effects of hindlimb unloading and ionizing radiation on skeletal muscle resistance artery vasodilation and its relation to cancellous bone in mice. J Appl Physiol (1985)). 2016;120(2):97–106. doi:10.1152/japplphysiol.00423.2015.
  • Bokhari RS, Metzger CE, Black JM, et al. Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice. NPJ Microgravity. 2019;5:13 doi:10.1038/s41526-019-0074-3.
  • Xu D, Zhao X, Li Y, et al. The combined effects of X-ray radiation and hindlimb suspension on bone loss. J Radiat Res. 2014;55(4):720–725. doi:10.1093/jrr/rru014.
  • Li M, Holmes V, Zhou Y, et al. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections. PloS One. 2014;9(1):e85665 doi:10.1371/journal.pone.0085665.
  • Sanzari JK, Romero-Weaver AL, James G, et al. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure. PloS One. 2013;8(8):e71757 doi:10.1371/journal.pone.0071757.
  • Kondo H, Yumoto K, Alwood JS, et al. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol (1985)). 2010;108(1):152–161. doi:10.1152/japplphysiol.00294.2009.
  • Overbey EG, Paul AM, da Silveira WA, et al. Mice exposed to combined chronic low-dose irradiation and modeled microgravity develop long-term neurological sequelae. Int J Mol Sci. 2019;20(17) ; 4094.
  • Kwok AT, Moore JE, Rosas S, et al. Knee and hip joint cartilage damage from combined spaceflight hazards of low-dose radiation less than 1 Gy and prolonged hindlimb unloading. Radiat Res. 2019;191(6):497–506. doi:10.1667/RR15216.1.
  • Yu K, Doherty AH, Genik PC, et al. Mimicking the effects of spaceflight on bone: combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice. Life Sci Space Res (Amst)). 2017;15:62–68. doi:10.1016/j.lssr.2017.08.004.
  • Mao XW, Nishiyama NC, Campbell-Beachler M, et al. Role of NADPH oxidase as a mediator of oxidative damage in low-dose irradiated and hindlimb-unloaded mice. Radiat Res. 2017;188(4):392–399. doi:10.1667/RR14754.1.
  • Ghosh P, Behnke BJ, Stabley JN, et al. Effects of High-LET radiation exposure and hindlimb unloading on skeletal muscle resistance artery vasomotor properties and cancellous bone microarchitecture in mice. Radiat Res. 2016;185(3):257–266. doi:10.1667/RR4308.1.
  • Alwood JS, Yumoto K, Mojarrab R, et al. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone. 2010;47(2):248–255. doi:10.1016/j.bone.2010.05.004.
  • Sibonga J, Matsumoto T, Jones J, et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone. 2019;128:112037 doi:10.1016/j.bone.2019.07.013.
  • Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–1012. doi:10.1359/JBMR.040307.
  • Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–1230. doi:10.1359/jbmr.060509.
  • Ferreira JA, Crissey JM, Brown M. An alternant method to the traditional NASA hindlimb unloading model in mice. J Vis Exp. 2011;10;(49):2467
  • Ellman R, Spatz J, Cloutier A, Palme R, Christiansen BA, Bouxsein ML. Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res. 2013;28(4):875–885. doi:10.1002/jbmr.1814.
  • Nakajima K, Matsunaga S, Morioka T, et al. Effects of unloading by tail suspension on biological apatite crystallite alignment in mouse femur. Dent Mater J. 2020;39(4):670–677. doi:10.4012/dmj.2019-187.
  • Willey JS, Lloyd SA, Nelson GA, Bateman TA. Space radiation and bone loss. Gravit Space Biol Bull. 2011;25(1):15–21.
  • Willey JS, Lloyd SA, Nelson GA, Bateman TA. Ionizing radiation and bone loss: space exploration and clinical therapy applications. Clin Rev Bone Miner Metab. 2011;9(1):54–62. doi:10.1007/s12018-011-9092-8.
  • Hamilton SA, Pecaut MJ, Gridley DS, et al. A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol (1985)). 2006;101(3):789–793. doi:10.1152/japplphysiol.01078.2005.
  • Steczina S, Tahimic CGT, Pendleton M, et al. Dietary countermeasure mitigates simulated spaceflight-induced osteopenia in mice. Sci Rep. 2020;10(1):6484 doi:10.1038/s41598-020-63404-x.
  • Macias BR, Lima F, Swift JM, et al. Simulating the lunar environment: partial weightbearing and high-LET radiation-induce bone loss and increase sclerostin-positive osteocytes. Radiat Res. 2016;186(3):254–263. doi:10.1667/RR13579.1.
  • Yumoto K, Globus RK, Mojarrab R, et al. Short-term effects of whole-body exposure to (56)fe ions in combination with musculoskeletal disuse on bone cells. Radiat Res. 2010;173(4):494–504. doi:10.1667/RR1754.1.
  • Schreurs AS, Shirazi-Fard Y, Shahnazari M, et al. Dried plum diet protects from bone loss caused by ionizing radiation. Sci Rep. 2016;6:21343 doi:10.1038/srep21343.
  • Kondo H, Searby ND, Mojarrab R, et al. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res. 2009;171(3):283–289. doi:10.1667/RR1463.1.
  • Willey JS, Lloyd SA, Robbins ME, et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res. 2008;170(3):388–392. doi:10.1667/RR1388.1.
  • Bandstra ER, Thompson RW, Nelson GA, et al. Musculoskeletal changes in mice from 20–50 cGy of simulated galactic cosmic rays. Radiat Res. 2009;172(1) 21–29.
  • Alwood JS, Tran LH, Schreurs AS, et al. Dose- and ion-dependent effects in the oxidative stress response to space-like radiation exposure in the skeletal system. Int J Mol Sci. 2017;10;8(10):2117
  • Simonsen LC, Slaba TC, Guida P, Rusek A. NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLoS Biol. 2020;18(5):e3000669 doi:10.1371/journal.pbio.3000669.
  • Flynn-Evans EE, Barger LK, Kubey AA, Sullivan JP, Czeisler CA. Circadian misalignment affects sleep and medication use before and during spaceflight. NPJ Microgravity. 2016;2(1):15019. doi:10.1038/npjmgrav.2015.19.
  • Oldknow KJ, MacRae VE, Farquharson C. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015;225(1):R1–19. doi:10.1530/JOE-14-0584.
  • DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8(11):674–683. doi:10.1038/nrrheum.2012.157.
  • Guntur AR, Rosen CJ. Bone as an endocrine organ. Endocr Pract. 2012;18(5):758–762. doi:10.4158/EP12141.RA.
  • Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest. 2014;124(4):1–13. doi:10.1172/JCI72323.
  • Kode A, Mosialou I, Silva BC, et al. FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem. 2012;287(12):8757–8768. doi:10.1074/jbc.M111.282897.
  • Rached MT, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010;120(1):357–368. doi:10.1172/JCI39901.
  • Mosialou I, Shikhel S, Liu JM, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543(7645):385–390. doi:10.1038/nature21697.
  • Khrimian L, Obri A, Karsenty G. Modulation of cognition and anxiety-like behavior by bone remodeling. Mol Metab. 2017;6(12):1610–1615. doi:10.1016/j.molmet.2017.10.001.
  • Khrimian L, Obri A, Ramos-Brossier M, et al. Gpr158 mediates osteocalcin's regulation of cognition. J Exp Med. 2017;214(10):2859–2873. doi:10.1084/jem.20171320.
  • Eilenberg W, Stojkovic S, Piechota-Polanczyk A, et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623–631. doi:10.1016/j.ejvs.2016.01.009.
  • Berger JM, Singh P, Khrimian L, et al. Mediation of the acute stress response by the skeleton. Cell Metab. 2019;30(5):890–902 e898. doi:10.1016/j.cmet.2019.08.012.
  • Lee AG, Mader TH, Gibson CR, Tarver W. Space flight-associated neuro-ocular syndrome. JAMA Ophthalmol. 2017;135(9):992–994. doi:10.1001/jamaophthalmol.2017.2396.
  • Mader TH, Gibson CR, Miller NR, Subramanian PS, Patel NB, Lee AG. An overview of spaceflight-associated neuro-ocular syndrome (SANS). Neurol India. 2019;67(Supplement):S206–S211. doi:10.4103/0028-3886.259126.
  • Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–2069. doi:10.1016/j.ophtha.2011.06.021.
  • Huang AS, Stenger MB, Macias BR. Gravitational influence on intraocular pressure: implications for spaceflight and disease. J Glaucoma. 2019;28(8):756–764. doi:10.1097/IJG.0000000000001293.
  • Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436)
  • Mao XW, Nishiyama NC, Byrum SD, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep. 2019;9(1):8215. doi:10.1038/s41598-019-44696-0.
  • Nelson ES, Mulugeta L, Myers JG. Microgravity-induced fluid shift and ophthalmic changes. Life (Basel)). 2014;4(4):621–665. doi:10.3390/life4040621.
  • Philpott DE, Corbett R, Turnbill C, et al. Cosmic ray effects on the eyes of rats flown on Cosmos No. 782, experimental K-007. Aviat Space Environ Med. 1978;49(1 Pt 1):19–28.
  • Taylor CR, Hanna M, Behnke BJ, et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. Faseb J. 2013;27(6):2282–2292. doi:10.1096/fj.12-222687.
  • Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev. 2018;98(1):59–87. doi:10.1152/physrev.00017.2016.
  • Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G. The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol. 2013;58(2):155–163. doi:10.1016/j.survophthal.2012.04.002.
  • Zhao D, He Z, Vingrys AJ, Bui BV, Nguyen CT. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep. 2015;3(8):e12507. doi:10.14814/phy2.12507.
  • Patel N, Pass A, Mason S, Gibson CR, Otto C. Optical coherence tomography analysis of the optic nerve head and surrounding structures in long-duration international space station astronauts. JAMA Ophthalmol. 2018;136(2):193–200. doi:10.1001/jamaophthalmol.2017.6226.
  • Morgan WH, Balaratnasingam C, Lind CR, et al. Cerebrospinal fluid pressure and the eye. Br J Ophthalmol. 2016;100(1):71–77. doi:10.1136/bjophthalmol-2015-306705.
  • Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison between 14- and 70-day head-down-tilt bed rest. Invest Ophthalmol Vis Sci. 2016;57(2):495–501. doi:10.1167/iovs.15-18530.
  • Frizziero L, Parrozzani R, Midena G, et al. Hyperreflective intraretinal spots in radiation macular edema on spectral domain optical coherence tomography. Retina. 2016;36(9):1664–1669. doi:10.1097/IAE.0000000000000986.
  • Mayer M, Kaiser N, Layer PG, Frohns F. Cell cycle regulation and apoptotic responses of the embryonic chick retina by ionizing radiation. PloS One. 2016;11(5):e0155093 doi:10.1371/journal.pone.0155093.
  • Toutounchian JJ, Steinle JJ, Makena PS, et al. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK. PloS One. 2014;9(6):e100210 doi:10.1371/journal.pone.0100210.
  • Vinogradova IV, Tronov VA, Liakhova KN, Poplinskaia VA, Ostrovskii MA. [Damage and functional recovery of the mouse retina after exposure to ionizing radiation and methylnitrosourea. ].Radiats Biol Radioecol. 2014;54(4):385–392.
  • Fedirko PA, Babenko TF, Dorichevska RY, Garkava NA. Retinal vascular pathology risk development in the irradiated at different ages as a result of chernobyl Npp accident. Probl Radiac Med Radiobiol. 2015;20:467–573. doi:10.33145/2304-8336-2015-20-467-473.
  • Mao XW, Archambeau JO, Kubinova L, Boyle S, Petersen G, Grove R. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods. Radiat Res. 2003;160(1):5–13. doi:10.1667/RR3007.
  • Mao XW, Boerma M, Rodriguez D, et al. Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells. Radiat Res. 2018;190(1):45–52. doi:10.1667/RR14977.1.
  • Chen HL, Qu LN, Li QD, Bi L, Huang ZM, Li YH. Simulated microgravity-induced oxidative stress in different areas of rat brain. Sheng Li Xue Bao. 2009;61(2):108–114.
  • Zhang R, Ran HH, Ma J, Bai YG, Lin LJ. NAD(P)H oxidase inhibiting with apocynin improved vascular reactivity in tail-suspended hindlimb unweighting rat. J Physiol Biochem. 2012;68(1):99–105. doi:10.1007/s13105-011-0123-1.
  • Yang TB, Zhong P, Qu LN, Yuan YH. [Space flight and peroxidative damage. Space Med Med Eng (Beijing)). 2003;16(6):455–458. ].
  • Zhan H, Chen LM, Xin YM, Tang GX, Wen J. Effects of tea polyphenols on cerebral lipid peroxidation, liver and renal functions in rats after repeated + Gz stress. Space Med Med Eng (Beijing). 1999;12(1):1–5.
  • Overbey EG, da Silveira WA, Stanbouly S, et al. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Sci Rep. 2019;9(1):13304 doi:10.1038/s41598-019-49453-x.
  • Roberts DR, Albrecht MH, Collins HR, et al. Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med. 2017;377(18):1746–1753. doi:10.1056/NEJMoa1705129.
  • Van Ombergen A, Demertzi A, Tomilovskaya E, et al. The effect of spaceflight and microgravity on the human brain. J Neurol. 2017;264(Suppl 1):18–22. doi:10.1007/s00415-017-8427-x.
  • Cebolla AM, Petieau M, Dan B, Balazs L, McIntyre J, Cheron G. Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness ". Sci Rep. 2016;6:37824 doi:10.1038/srep37824.
  • Espinosa-Jeffrey A, Nguyen K, Kumar S, et al. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J Neurosci Res. 2016;94(12):1434–1450. doi:10.1002/jnr.23958.
  • Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest. 2017;127(9):3271–3280. doi:10.1172/JCI90610.
  • Whoolery CW, Yun S, Reynolds RP, et al. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep. 2020;10(1):2737 doi:10.1038/s41598-020-59419-z.
  • Britten RA, Duncan VD, Fesshaye A, Rudobeck E, Nelson GA, Vlkolinsky R. Altered cognitive flexibility and synaptic plasticity in the rat prefrontal cortex after exposure to low (≤15 cGy) Doses of 28Si Radiation. Radiat Res. 2020;193(3):223–235. doi:10.1667/RR15458.1.
  • Parihar VK, Maroso M, Syage A, et al. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Exp Neurol. 2018;305:44–55. doi:10.1016/j.expneurol.2018.03.009.
  • Parihar VK, Allen BD, Caressi C, et al. Cosmic radiation exposure and persistent cognitive dysfunction. Sci Rep. 2016;6:34774 doi:10.1038/srep34774.
  • Hadley MM, Davis LK, Jewell JS, Miller VD, Britten RA. Exposure to mission-relevant doses of 1 GeV/n (48)Ti particles impairs attentional set-shifting performance in retired breeder rats. Radiat Res. 2016;185(1):13–19. doi:10.1667/RR14086.1.
  • Bellone JA, Rudobeck E, Hartman RE, Szucs A, Vlkolinsky R. A single low dose of proton radiation induces long-term behavioral and electrophysiological changes in mice. Radiat Res. 2015;184(2):193–202. doi:10.1667/rr13903.1.
  • Sokolova IV, Schneider CJ, Bezaire M, Soltesz I, Vlkolinsky R, Nelson GA. Proton radiation alters intrinsic and synaptic properties of CA1 pyramidal neurons of the mouse hippocampus. Radiat Res. 2015;183(2):208–218. doi:10.1667/RR13785.1.
  • Marty VN, Vlkolinsky R, Minassian N, Cohen T, Nelson GA, Spigelman I. Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles. Radiat Res. 2014;182(6):653–665. doi:10.1667/RR13647.1.
  • Britten RA, Davis LK, Jewell JS, et al. Exposure to mission relevant doses of 1 GeV/Nucleon (56)Fe particles leads to impairment of attentional set-shifting performance in socially mature rats. Radiat Res. 2014;182(3):292–298. doi:10.1667/RR3766.1.
  • Rudobeck E, Nelson GA, Sokolova IV, Vlkolinsky R. (28)silicon radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability. Radiat Res. 2014;181(4):407–415. doi:10.1667/RR13484.1.
  • Machida M, Lonart G, Britten RA. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiat Res. 2010;174(5):618–623. doi:10.1667/RR1988.1.
  • Villasana L, Rosenberg J, Raber J. Sex-dependent effects of 56Fe irradiation on contextual fear conditioning in C57BL/6J mice. Hippocampus. 2010;20(1):19–23.
  • Vlkolinsky R, Krucker T, Nelson GA, Obenaus A. (56)Fe-particle radiation reduces neuronal output and attenuates lipopolysaccharide-induced inhibition of long-term potentiation in the mouse hippocampus. Radiat Res. 2008;169(5):523–530. doi:10.1667/RR1228.1.
  • Moore TM, Basner M, Nasrini J, et al. Validation of the cognition test battery for spaceflight in a sample of highly educated adults. Aerosp Med Hum Perform. 2017;88(10):937–946. doi:10.3357/AMHP.4801.2017.
  • Basner M, Savitt A, Moore TM, et al. Development and validation of the cognition test battery for spaceflight. Aerosp Med Hum Perform. 2015;86(11):942–952. doi:10.3357/AMHP.4343.2015.
  • Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–322. doi:10.1196/annals.1417.002.
  • Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, Cajochen C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res. 2006;168(2):312–317. doi:10.1016/j.bbr.2005.11.018.
  • Davis CM, DeCicco-Skinner KL, Roma PG, Hienz RD. Individual differences in attentional deficits and dopaminergic protein levels following exposure to proton radiation. Radiat Res. 2014;181(3):258–271. doi:10.1667/RR13359.1.
  • Wiegmann DA, Shappell SA. Human error and crew resource management failures in Naval aviation mishaps: a review of U.S. Naval Safety Center data, 1990–96. Aviat Space Environ Med. 1999;70(12):1147–1151.
  • Eling P, Derckx K, Maes R. On the historical and conceptual background of the Wisconsin Card Sorting Test. Brain Cogn. 2008;67(3):247–253. doi:10.1016/j.bandc.2008.01.006.
  • Sawada Y, Nishio Y, Suzuki K, et al. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study. PloS One. 2012;7(6):e38498 doi:10.1371/journal.pone.0038498.
  • Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson's disease. J Neurosci. 2004;24(3):702–710. doi:10.1523/JNEUROSCI.4860-03.2004.
  • Yerys BE, Wallace GL, Harrison B, Celano MJ, Giedd JN, Kenworthy LE. Set-shifting in children with autism spectrum disorders: reversal shifting deficits on the Intradimensional/Extradimensional Shift Test correlate with repetitive behaviors. Autism. 2009;13(5):523–538. doi:10.1177/1362361309335716.
  • Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000;20(11):4320–4324. doi:10.1523/JNEUROSCI.20-11-04320.2000.
  • Jewell JS, Duncan VD, Fesshaye A, Tondin A, Macadat E, Britten RA. Exposure to ≤15 cGy of 600 MeV/n 56Fe particles impairs rule acquisition but not long-term memory in the attentional set-shifting assay. Radiat Res. 2018;190(6):565–575. doi:10.1667/RR15085.1.
  • Britten RA, Duncan VD, Fesshaye AS, Wellman LL, Fallgren CM, Sanford LD. Sleep fragmentation exacerbates executive function impairments induced by protracted low dose rate neutron exposure. Int J Radiat Biol. 2019;6:1–11.
  • Britten RA, Miller VD, Hadley MM, Jewell JS, Macadat E. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20cGy of 1GeV/n (56)Fe particles. Life Sci Space Res (AMST)). 2016;10:17–22. doi:10.1016/j.lssr.2016.06.005.
  • Acharya MM, Baddour AA, Kawashita T, et al. Epigenetic determinants of space radiation-induced cognitive dysfunction. Sci Rep. 2017;7:42885 doi:10.1038/srep42885.
  • Bellone JA, Gifford PS, Nishiyama NC, Hartman RE, Mao XW. Long-term effects of simulated microgravity and/or chronic exposure to low-dose gamma radiation on behavior and blood-brain barrier integrity. NPJ Microgravity. 2016;2:16019 doi:10.1038/npjmgrav.2016.19.
  • Sicard G, Royet JP, Jourdan F. A comparative study of 2-deoxyglucose patterns of glomerular activation in the olfactory bulbs of C57 BL/6J and AKR/J mice. Brain Res. 1989;481(2):325–334. doi:10.1016/0006-8993(89)90810-x.
  • Wu X, Li D, Liu J, et al. Dammarane sapogenins ameliorates neurocognitive functional impairment induced by simulated long-duration spaceflight. Front Pharmacol. 2017;8:315 doi:10.3389/fphar.2017.00315.
  • Sprugnoli G, Cagle YD, Santarnecchi E. Microgravity and cosmic radiations during space exploration as a window into neurodegeneration on Earth. JAMA Neurol. 2020;77(2):157–158. doi:10.1001/jamaneurol.2019.4003.
  • Stojanoski B, Benoit A, Van Den Berg N, et al. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution. Sleep. 2019;42(1):1–9.doi:10.1093/sleep/zsy200.
  • Nair D, Zhang SX, Ramesh V, et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med. 2011;184(11):1305–1312. doi:10.1164/rccm.201107-1173OC.
  • McCoy JG, Tartar JL, Bebis AC, et al. Experimental sleep fragmentation impairs attentional set-shifting in rats. Sleep. 2007;30(1):52–60. doi:10.1093/sleep/30.1.52.
  • Martin SE, Engleman HM, Deary IJ, Douglas NJ. The effect of sleep fragmentation on daytime function. Am J Respir Crit Care Med. 1996;153(4):1328–1332. doi:10.1164/ajrccm.153.4.8616562.
  • Britten RA, Fesshaye AS, Duncan VD, Wellman LL, Sanford LD. Sleep fragmentation exacerbates executive function impairments induced by low doses of Si ions. Radiat Res. 2020;194(2):116–123. doi:10.1667/RADE-20-00080.1.
  • Lee SMC, Ribeiro LC, Martin DS, et al. Arterial structure and function during and after long-duration spaceflight. J Appl Physiol (1985). 2020;129(1):108–123. doi:10.1152/japplphysiol.00550.2019.
  • Mao XW, Byrum S, Nishiyama NC, et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis. Int J Mol Sci. 2018;19(9):2546.
  • Mao XW, Nishiyama NC, Byrum SD, et al. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. Faseb J. 2020;34(11):15516–15530. doi:10.1096/fj.202001754R.
  • Sofronova SI, Tarasova OS, Gaynullina D, et al. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985)). 2015;118(7):830–838. doi:10.1152/japplphysiol.00976.2014.
  • Hatton DC, Yue Q, Chapman J, et al. Blood pressure and mesenteric resistance arterial function after spaceflight. J Appl Physiol (1985). 2002;92(1):13–17. doi:10.1152/jappl.2002.92.1.13.
  • Prisby RD, Wilkerson MK, Sokoya EM, Bryan RM, Jr., Wilson E, Delp MD. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. J Appl Physiol (1985)). 2006;101(1):348–353. doi:10.1152/japplphysiol.00941.2005.
  • Zhang R, Jia G, Bao J, et al. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats. J Physiol Sci. 2008;58(1):67–73. doi:10.2170/physiolsci.RP010707.
  • Ade CJ, Broxterman RM, Charvat JM, Barstow TJ. Incidence rate of cardiovascular disease end points in the national aeronautics and space administration astronaut corps. J Am Heart Assoc. 2017;7;6(8)
  • Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P. Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep. 2016;6:29901 doi:10.1038/srep29901.
  • Kashcheev VV, Chekin SY, Karpenko SV, et al. Radiation risk of cardiovascular diseases in the cohort of Russian emergency workers of the chernobyl accident. Health Phys. 2017;113(1):23–29. doi:10.1097/HP.0000000000000670.
  • Little MP, Azizova TV, Bazyka D, et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect. 2012;120(11):1503–1511. doi:10.1289/ehp.1204982.
  • Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol. 2018;15(3):167–180. doi:10.1038/nrcardio.2017.157.
  • Soucy KG, Lim HK, Kim JH, et al. HZE 56Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase. Radiat Res. 2011;176(4):474–485. doi:10.1667/rr2598.1.
  • Soucy KG, Lim HK, Attarzadeh DO, et al. Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta. J Appl Physiol (1985)). 2010;108(5):1250–1258. doi:10.1152/japplphysiol.00946.2009.
  • Grabham P, Sharma P, Bigelow A, Geard C. Two distinct types of the inhibition of vasculogenesis by different species of charged particles. Vasc Cell. 2013;5(1):16 doi:10.1186/2045-824X-5-16.
  • Mao XW, Favre CJ, Fike JR, et al. High-LET radiation-induced response of microvessels in the Hippocampus. Radiat Res. 2010;173(4):486–493. doi:10.1667/RR1728.1.
  • Yu T, Parks BW, Yu S, et al. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice. Radiat Res. 2011;175(6):766–773. doi:10.1667/RR2482.1.
  • Koturbash I, Miousse IR, Sridharan V, et al. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res. 2016;787:43–53. doi:10.1016/j.mrfmmm.2016.02.009.
  • Sasi SP, Yan X, Zuriaga-Herrero M, et al. Different sequences of fractionated low-dose proton and single iron-radiation-induced divergent biological responses in the heart. Radiat Res. 2017;188(2):191–203. doi:10.1667/RR14667.1.
  • Marshall-Goebel K, Laurie SS, Alferova IV, et al. Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Netw Open. 2019;2(11):e1915011. doi:10.1001/jamanetworkopen.2019.15011.
  • Aunon-Chancellor SM, Pattarini JM, Moll S, Sargsyan A. Venous thrombosis during spaceflight. N Engl J Med. 2020;382(1):89–90. doi:10.1056/NEJMc1905875.
  • Blaber EA, Dvorochkin N, Torres ML, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 2014;13(2):181–201. doi:10.1016/j.scr.2014.05.005.
  • Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–784.e776. doi:10.1016/j.stem.2017.02.009.
  • Valenti MT, Dalle Carbonare L, Dorelli G, Mottes M. Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Rev Rep. 2020;16(1):33–40. doi:10.1007/s12015-019-09928-w.
  • DeCarolis NA, Kirby ED, Wyss-Coray T, Palmer TD. The role of the microenvironmental niche in declining stem-cell functions associated with biological aging. Cold Spring Harb Perspect Med. 2015;5(12):a025874. doi:10.1101/cshperspect.a025874.
  • Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des. 2013;19(19):3429–3445. doi:10.2174/13816128113199990350.
  • Karunagaran D, Joseph J, Kumar TR. Cell growth regulation. Adv Exp Med Biol. 2007;595:245–268. doi:10.1007/978-0-387-46401-5_11.
  • Shinde V, Brungs S, Henry M, et al. Simulated microgravity modulates differentiation processes of embryonic stem cells. Cell Physiol Biochem. 2016;38(4):1483–1499. doi:10.1159/000443090.
  • Blaber EA, Finkelstein H, Dvorochkin N, et al. Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev. 2015;24(22):2605–2621. doi:10.1089/scd.2015.0218.
  • Lei X, Cao Y, Zhang Y, et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 2018;51(5):e12466 doi:10.1111/cpr.12466.
  • Acharya A, Brungs S, Henry M, et al. Modulation of differentiation processes in murine embryonic stem cells exposed to parabolic flight-induced acute hypergravity and microgravity. Stem Cells Dev. 2018;27(12):838–847. doi:10.1089/scd.2017.0294.
  • Baio J, Martinez AF, Silva I, et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity. 2018;4:13 doi:10.1038/s41526-018-0048-x.
  • Baio J, Martinez AF, Bailey L, Hasaniya N, Pecaut MJ, Kearns-Jonker M. Spaceflight activates protein kinase C alpha signaling and modifies the developmental stage of human neonatal cardiovascular progenitor cells. Stem Cells Dev. 2018;27(12):805–818. doi:10.1089/scd.2017.0263.
  • Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of spaceflight and simulated microgravity on YAP1 expression in cardiovascular progenitors: implications for cell-based repair. Int J Mol Sci. 2019;20(11):2742
  • Chen Z, Luo Q, Lin C, Kuang D, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep. 2016;6:30322 doi:10.1038/srep30322.
  • Touchstone H, Bryd R, Loisate S, et al. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity. 2019;5:11 doi:10.1038/s41526-019-0072-5.
  • Merzlikina NV, Buravkova LB, Romanov YA. The primary effects of clinorotation on cultured human mesenchymal stem cells. J Gravit Physiol. 2004;11(2):P193–194.
  • Gershovich JG, Buravkova LB. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Bull Exp Biol Med. 2007;144(4):608–613. doi:10.1007/s10517-007-0387-1.
  • Yuge L, Kajiume T, Tahara H, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev. 2006;15(6):921–929. doi:10.1089/scd.2006.15.921.
  • Dai ZQ, Wang R, Ling SK, Wan YM, Li YH. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 2007;40(5):671–684. doi:10.1111/j.1365-2184.2007.00461.x.
  • Monticone M, Liu Y, Pujic N, Cancedda R. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. J Cell Biochem. 2010;111(2):442–452. doi:10.1002/jcb.22765.
  • Hu Z, Wang Y, Sun Z, et al. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Sci Rep. 2015;5:18655 doi:10.1038/srep18655.
  • Markina E, Andreeva E, Andrianova I, Sotnezova E, Buravkova L. Stromal and hematopoietic progenitors from C57/BI/6N murine bone marrow after 30-day "BION-M1" spaceflight. Stem Cells Dev. 2018;27(18):1268–1277. doi:10.1089/scd.2017.0264.
  • Blaber EA, Dvorochkin N, Lee C, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One. 2013;8(4):e61372. doi:10.1371/journal.pone.0061372.
  • Zhang C, Li L, Jiang Y, et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. Faseb J. 2018;32(8):4444–4458. doi:10.1096/fj.201700208RR.
  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res. 2005;20(10):1858–1866. doi:10.1359/JBMR.050611.
  • Pecaut MJ, Mao XW, Bellinger DL, et al. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS One. 2017;12(5):e0174174 doi:10.1371/journal.pone.0174174.
  • Gridley DS, Slater JM, Luo-Owen X, et al. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol (1985). 2009;106(1):194–202. doi:10.1152/japplphysiol.91126.2008.
  • Crucian B, Stowe R, Quiriarte H, Pierson D, Sams C. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med. 2011;82(9):857–862. doi:10.3357/asem.3047.2011.
  • Sonnenfeld G. The immune system in space, including Earth-based benefits of space-based research. Curr Pharm Biotechnol. 2005;6(4):343–349. doi:10.2174/1389201054553699.
  • Cao D, Song J, Ling S, et al. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions. Faseb J. 2019;33(6):6904–6918. doi:10.1096/fj.201802421RR.
  • Benjamin CL, Stowe RP, St John L, et al. Decreases in thymopoiesis of astronauts returning from space flight. JCI Insight. 2016;1(12):e88787 doi:10.1172/jci.insight.88787.
  • Davis TA, Wiesmann W, Kidwell W, et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol. 1996;60(1):69–76. doi:10.1002/jlb.60.1.69.
  • Barrila J, Ott CM, LeBlanc C, et al. Spaceflight modulates gene expression in the whole blood of astronauts. NPJ Microgravity. 2016;2:16039 doi:10.1038/npjmgrav.2016.39.
  • Sotnezova EV, Markina EA, Andreeva ER, Buravkova LB. Myeloid precursors in the bone marrow of mice after a 30-day space mission on a Bion-M1 biosatellite. Bull Exp Biol Med. 2017;162(4):496–500. doi:10.1007/s10517-017-3647-8.
  • Low EK, Brudvik E, Kuhlman B, Wilson PF, Almeida-Porada G, Porada CD. Microgravity impairs DNA damage repair in human hematopoietic stem/progenitor cells and inhibits their differentiation into dendritic cells. Stem Cells Dev. 2018;27(18):1257–1267. doi:10.1089/scd.2018.0052.
  • Mattei C, Alshawaf A, D'Abaco G, Nayagam B, Dottori M. Generation of neural organoids from human embryonic stem cells using the rotary cell culture system: effects of microgravity on neural progenitor cell fate. Stem Cells Dev. 2018;27(12):848–857. doi:10.1089/scd.2018.0012.
  • Jha R, Wu Q, Singh M, et al. Simulated microgravity and 3D culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci Rep. 2016;6:30956 doi:10.1038/srep30956.
  • Xue L, Li Y, Chen J. Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep. 2017;15(5):3011–3018. doi:10.3892/mmr.2017.6357.
  • Almeida-Porada G, Rodman C, Kuhlman B, et al. Exposure of the bone marrow microenvironment to simulated solar and galactic cosmic radiation induces biological bystander effects on human hematopoiesis. Stem Cells Dev. 2018;27(18):1237–1256. doi:10.1089/scd.2018.0005.
  • Rodman C, Almeida-Porada G, George SK, et al. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia. 2017;31(6):1398–1407. doi:10.1038/leu.2016.344.
  • Encinas JM, Vazquez ME, Switzer RC, et al. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Exp Neurol. 2008;210(1):274–279. doi:10.1016/j.expneurol.2007.10.021.
  • Suman S, Rodriguez OC, Winters TA, Fornace AJ, Albanese C, Datta K. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging (Albany NY)). 2013;5(8):607–622. doi:10.18632/aging.100587.
  • Cekanaviciute E, Rosi S, Costes SV. Central Nervous System Responses to Simulated Galactic Cosmic Rays. Int J Mol Sci. 2018;19(11):3669
  • McConnell AM, Konda B, Kirsch DG, Stripp BR. Distal airway epithelial progenitor cells are radiosensitive to High-LET radiation. Sci Rep. 2016;6:33455 doi:10.1038/srep33455.
  • An L, Li Y, Fan Y, et al. The trends in global gene expression in mouse embryonic stem cells during spaceflight. Front Genet. 2019;10:768 doi:10.3389/fgene.2019.00768.
  • Mao XW, Nishiyama NC, Pecaut MJ, et al. Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res. 2016;185(6):647–657. doi:10.1667/RR14267.1.
  • Shanmugarajan S, Zhang Y, Moreno-Villanueva M, et al. Combined effects of simulated microgravity and radiation exposure on osteoclast cell fusion. Int J Mol Sci. 2017;18(11):2443
  • Kondo H, Limoli C, Searby ND, et al. Shared oxidative pathways in response to gravity-dependent loading and gamma-irradiation of bone marrow-derived skeletal cell progenitors. Radiats Biol Radioecol. 2007;47(3):281–285.
  • Manti L, Durante M, Cirrone GA, et al. Modelled microgravity does not modify the yield of chromosome aberrations induced by high-energy protons in human lymphocytes. Int J Radiat Biol. 2005;81(2):147–155. doi:10.1080/09553000500091188.
  • Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs responding to space radiation. Int J Mol Sci. 2020;21(18):6603
  • Girardi C, De Pittà C, Casara S, et al. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One. 2012;7(2):e31293 doi:10.1371/journal.pone.0031293.
  • Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. Life Sci Space Res (Amst)). 2020;24:1–8. doi:10.1016/j.lssr.2019.10.009.
  • Blaber E, Sato K, Almeida EA. Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. 2014;23 Suppl 1 (Suppl 1):73–78. doi:10.1089/scd.2014.0408.
  • Grimm D, Egli M, Krüger M, et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev. 2018;27(12):787–804. doi:10.1089/scd.2017.0242.
  • Otsuka T, Imura T, Nakagawa K, et al. Simulated microgravity culture enhances the neuroprotective effects of human cranial bone-derived mesenchymal stem cells in traumatic brain injury. Stem Cells Dev. 2018;27(18):1287–1297. doi:10.1089/scd.2017.0299.
  • Imura T, Nakagawa K, Kawahara Y, Yuge L. Stem cell culture in microgravity and its application in cell-based therapy. Stem Cells Dev. 2018;27(18):1298–1302. doi:10.1089/scd.2017.0298.
  • Blaber EA. Special issue: stem cells, radiation, and microgravity. Stem Cells Dev. 2018;27(18):1227–1229. doi:10.1089/scd.2018.29003.bla.
  • Blaber EA, Parker GC. Special issue: stem cells and microgravity. Stem Cells Dev. 2018;27(12):783–786. doi:10.1089/scd.2018.29001.bla.
  • Chen Z, Luo Q, Lin C, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Biochem Biophys Res Commun. 2015;468(1-2):21–26. doi:10.1016/j.bbrc.2015.11.006.
  • Mao X, Chen Z, Luo Q, Zhang B, Song G. Simulated microgravity inhibits the migration of mesenchymal stem cells by remodeling actin cytoskeleton and increasing cell stiffness. Cytotechnology. 2016;68(6):2235–2243. doi:10.1007/s10616-016-0007-x.
  • Zarrinpour V, Hajebrahimi Z, Jafarinia M. Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition. Iran J Basic Med Sci. 2017;20(2):178–186. doi:10.22038/ijbms.2017.8244.
  • Wilkerson MK, Lesniewski LA, Golding EM, et al. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am J Physiol Heart Circ Physiol. 2005;288(4):H1652–1661. doi:10.1152/ajpheart.00925.2004.
  • Colleran PN, Wilkerson MK, Bloomfield SA, Suva LJ, Turner RT, Delp MD. Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. J Appl Physiol (1985). 2000;89(3):1046–1054. doi:10.1152/jappl.2000.89.3.1046.
  • Geary GG, Krause DN, Purdy RE, Duckles SP. Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol (1985)). 1998;85(5):1615–1621. doi:10.1152/jappl.1998.85.5.1615.
  • Davet J, Clavel B, Datas L, et al. Choroidal readaptation to gravity in rats after spaceflight and head-down tilt. J Appl Physiol (1985)). 1998;84(1):19–29. doi:10.1152/jappl.1998.84.1.19.
  • Gabrion J, Herbute S, Oliver J, et al. Choroidal responses in microgravity. (SLS-1, SLS-2 and hindlimb-suspension experiments). Acta Astronaut. 1995;36(8-12):439–448. doi:10.1016/0094-5765(95)00129-8.
  • Campagne DM. Stress and perceived social isolation (loneliness). Arch Gerontol Geriatr. 2019;82:192–199. doi:10.1016/j.archger.2019.02.007.
  • Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother. 2018;105:1205–1222. doi:10.1016/j.biopha.2018.05.086.
  • Mason G, Wilson D, Hampton C, Wurbel H. Non-invasively assessing disturbance and stress in laboratory rats by scoring chromodacryorrhoea. Altern Lab Anim. 2004;32(1_suppl):153–159. doi:10.1177/026119290403201s25.
  • Horie K, Kudo T, Yoshinaga R, et al. Long-term hindlimb unloading causes a preferential reduction of medullary thymic epithelial cells expressing autoimmune regulator (Aire). Biochem Biophys Res Commun. 2018;501(3):745–750. doi:10.1016/j.bbrc.2018.05.060.
  • Wang KX, Shi Y, Denhardt DT. Osteopontin regulates hindlimb-unloading-induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci U S A. 2007;104(37):14777–14782. doi:10.1073/pnas.0703236104.
  • Wei LX, Zhou JN, Roberts AI, Shi YF. Lymphocyte reduction induced by hindlimb unloading: distinct mechanisms in the spleen and thymus. Cell Res. 2003;13(6):465–471. doi:10.1038/sj.cr.7290189.
  • Iwaniec UT, Philbrick KA, Wong CP, et al. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int. 2016;27(10):3091–3101. doi:10.1007/s00198-016-3634-3.
  • Luan HQ, Sun LW, Huang YF, et al. Use of micro-computed tomography to evaluate the effects of exercise on preventing the degeneration of articular cartilage in tail-suspended rats. Life Sci Space Res (AMST)). 2015;6:15–20. doi:10.1016/j.lssr.2015.06.001.
  • Djordjevic J, Djordjevic A, Adzic M, Radojcic MB. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers. Neuropsychobiology. 2012;66(2):112–119. doi:10.1159/000338605.
  • McLean S, Grayson B, Harris M, Protheroe C, Woolley M, Neill J. Isolation rearing impairs novel object recognition and attentional set shifting performance in female rats. J Psychopharmacol. 2010;24(1):57–63. doi:10.1177/0269881108093842.
  • Jessop JJ, Bayer BM. Time-dependent effects of isolation on lymphocyte and adrenocortical activity. J Neuroimmunol. 1989;23(2):143–147. doi:10.1016/0165-5728(89)90033-7.
  • Ros-Simo C, Valverde O. Early-life social experiences in mice affect emotional behaviour and hypothalamic-pituitary-adrenal axis function. Pharmacol Biochem Behav. 2012;102(3):434–441. doi:10.1016/j.pbb.2012.06.001.
  • Shetty RA, Sadananda M. Brief social isolation in the adolescent Wistar-Kyoto Rat Model of endogenous depression alters corticosterone and regional monoamine concentrations. Neurochem Res. 2017;42(5):1470–1477. doi:10.1007/s11064-017-2203-2.
  • Bellavance MA, Rivest S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol. 2014;5:136 doi:10.3389/fimmu.2014.00136.
  • Krugel U, Fischer J, Bauer K, Sack U, Himmerich H. The impact of social isolation on immunological parameters in rats. Arch Toxicol. 2014;88(3):853–855.
  • Wu W, Yamaura T, Murakami K, et al. Social isolation stress enhanced liver metastasis of murine colon 26-L5 carcinoma cells by suppressing immune responses in mice. Life Sci. 2000;66(19):1827–1838. doi:10.1016/S0024-3205(00)00506-3.
  • Wang L, Cao M, Pu T, Huang H, Marshall C, Xiao M. Enriched physical environment attenuates spatial and social memory impairments of aged socially isolated mice. Int J Neuropsychopharmacol. 2018;21(12):1114–1127. doi:10.1093/ijnp/pyy084.
  • Pereda-Perez I, Popovic N, Otalora BB, et al. Long-term social isolation in the adulthood results in CA1 shrinkage and cognitive impairment. Neurobiol Learn Mem. 2013;106:31–39. doi:10.1016/j.nlm.2013.07.004.
  • Gong WG, Wang YJ, Zhou H, et al. Citalopram ameliorates synaptic plasticity deficits in different cognition-associated brain regions induced by social isolation in middle-aged rats. Mol Neurobiol. 2017;54(3):1927–1938. doi:10.1007/s12035-016-9781-x.
  • Smith BM, Yao X, Chen KS, Kirby ED. A larger social network enhances novel object location memory and reduces hippocampal microgliosis in aged mice. Front Aging Neurosci. 2018;10:142 doi:10.3389/fnagi.2018.00142.
  • Filipovic D, Stanisavljevic A, Jasnic N, et al. Chronic treatment with fluoxetine or clozapine of socially isolated rats prevents subsector-specific reduction of parvalbumin immunoreactive cells in the hippocampus. Neuroscience. 2018;371:384–394.
  • Todorovic N, Filipovic D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-alpha. Pharmacol Biochem Behav. 2017;163:57–65.
  • Zhou Y, Ni H, Li M, et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PloS One. 2012;7(9):e44329 doi:10.1371/journal.pone.0044329.
  • Doty SB, Vico L, Wronski T, Morey-Holton E. Use of animal models to study skeletal effects of space flight. Adv Space Biol Med. 2005;10:209–224. doi:10.1016/s1569-2574(05)10008-2.
  • Musacchia XJ, Fagette S. Weightlessness simulations for cardiovascular and muscle systems: validity of rat models. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology. 1997;4(3):49–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.