4,287
Views
0
CrossRef citations to date
0
Altmetric
Articles

Everything you wanted to know about space radiation but were afraid to ask

, , , , , & show all

References

  • Carnell L, Blattnig S, Hu S. Risk of Acute Radiation Syndromes Due to Solar Particle Events: Evidence Report. Houston: Natl. Aeronaut. Space Admin; 2016.
  • Chancellor JC, Blue RS, Cengel KA, et al. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity. 2018;4:8–11. doi:10.1038/s41526-018-0043-2.
  • Chancellor J, Scott G, Sutton J. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life (Basel). 2014;4(3):491–510. doi:10.3390/life4030491.
  • Cucinotta FA, Kim M-HY, Ren L. Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas. 2006;41(9–10):1173–1185. doi:10.1016/j.radmeas.2006.03.011.
  • Guetersloh S, Zeitlin C, Heilbronn L, et al. Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl Instrum Methods Phys Res, Sect B. 2006;252(2):319–332. doi:10.1016/j.nimb.2006.08.019.
  • Newhauser W, Titt U, Dexheimer D. A perspective on shielding design methods for future proton therapy facilities. Proceedings of the Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF-6) Conference Sponsored by the OECD/NEA, Stanford, CA; 2002: 10–12.
  • Wilson JW, Cucinotta F, Shinn J, et al. Shielding from solar particle event exposures in deep space. Radiat Meas. 1999;30(3):361–382. doi:10.1016/S1350-4487(99)00063-3.
  • Zeitlin C, Guetersloh S, Heilbronn L, Miller J. Shielding and fragmentation studies. Radiat Prot Dosimetry. 2005;116(1-4 Pt 2):123–124. doi:10.1093/rpd/nci064.
  • Slaba TC, Bahadori AA, Reddell BD, Singleterry RC, Clowdsley MS, Blattnig SR. Optimal shielding thickness for galactic cosmic ray environments. Life Sci Space Res (Amst). 2017;12:1–15. doi:10.1016/j.lssr.2016.12.003.
  • Williams JP, Brown SL, Georges GE, et al. Animal models for medical countermeasures to radiation exposure. Radiat Res. 2010;173(4):557–578. doi:10.1667/RR1880.1.
  • Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O'Banion MK, Puzas E. Addressing the symptoms or fixing the problem? Developing countermeasures against normal tissue radiation injury. Radiat Res. 2016;186(1):1–16. doi:10.1667/RR14473.1.
  • Chancellor JC, Guetersloh SB, Blue RS, Cengel KA, Ford JR, Katzgraber HG. Targeted nuclear spallation from moderator block design for a ground-based space radiation analog. arXiv preprint. 2017;arXiv:1706.02727
  • Simpson J. Elemental and isotopic composition of the galactic cosmic rays. Annu Rev Nucl Part Sci. 1983;33(1):323–382. doi:10.1146/annurev.ns.33.120183.001543.
  • Mewaldt R. The cosmic ray radiation dose in interplanetary space present day and worst-case evaluations. 29th International Cosmic Ray Conference. 2:433-436 2005.
  • Rahmanifard F, Wet WC, Schwadron NA, et al. Galactic cosmic radiation in the interplanetary space through a modern secular minimum. Space Weather. 2020;18(9):e2019SW002428. doi:10.1029/2019SW002428.
  • Wouter C, Slaba TC, Rahmanifard F, et al. CRaTER observations and permissible mission duration for human operations in deep space. Life Sci Space Res. 2020; 26:149–162.
  • Cucinotta FA, Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 2006;7(5):431–435. doi:10.1016/S1470-2045(06)70695-7.
  • Board SS, Council NR. Radiation Hazards to Crews of Interplanetary Missions: biological Issues and Research Strategies. National Academies Press, 1997.
  • Edwards A. RBE of radiations in space and the implications for space travel. Phys Med. 2001;17:147–152.
  • NCRP. Information Needed to Make Radiation Protection Recommendations for Space Missions beyond Low-Earth Orbit; NCRP Report No. 153. Bethesda: National Council on Radiation Protection and Measurements; 2006.
  • NCRP. Guidance on radiation received in space activities; NCRP Report No. 98 Bethesda: National Council on Radiation Protection and Measurements:1988.
  • Hellweg CE, Baumstark-Khan C. Getting ready for the manned mission to Mars: the astronauts' risk from space radiation. Naturwissenschaften. 2007;94(7):517–526. doi:10.1007/s00114-006-0204-0.
  • Smart D, Shea M. Comment on estimating the solar proton environment that may affect Mars missions. Adv Space Res. 2003;31(1):45–50. doi:10.1016/S0273-1177(02)00655-5.
  • Nelson GA. Space radiation and human exposures, a primer. Radiat Res. 2016;185(4):349–358. doi:10.1667/RR14311.1.
  • Kennedy AR. Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res (Amst). 2014;1:10–43. doi:10.1016/j.lssr.2014.02.004.
  • Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–1732. doi:10.1001/jama.296.14.1731.
  • Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197. doi:10.1136/bmj.39048.407928.BE.
  • Nolan MW, Kent MS, Keara Boss M. Emerging translational opportunities in comparative oncology with companion canine cancers: Radiation oncology. Front Oncol. 2019;9:1291. doi:10.3389/fonc.2019.01291.
  • Siranart N, Blakely EA, Cheng A, Handa N, Sachs RK. Mixed beam murine harderian gland tumorigenesis: predicted dose-effect relationships if neither synergism nor antagonism occurs. Radiat Res. 2016;186(6):577–591. doi:10.1667/RR14411.1.
  • Edmondson E, Gatti DM, Ray F, et al. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion- and γ-ray-induced tumors. Sci Adv. 2020;6(16):eaax5940. doi:10.1126/sciadv.aax5940.
  • Walker SA, Townsend LW, Norbury JW. Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum. Adv Space Res. 2013;51(9):1792–1799. doi:10.1016/j.asr.2012.12.011.
  • Blue RS, Chancellor JC, Antonsen EL, Bayuse TM, Daniels VR, Wotring VE. Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. NPJ Microgravity. 2019;5:15–19. doi:10.1038/s41526-019-0076-1.
  • Hall E, Giaccia A. Radiobiology for the Radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
  • Attix FH. Introduction to Radiological Physics and Radiation Dosimetry. Weinheim: John Wiley & Sons, 2008.
  • ICRP. ICRP Publication 78: Individual Monitoring for Internal Exposure of Workers. Elsevier Health Sciences, 1998.
  • Dasu A, Toma‐Dasu I. Impact of variable RBE on proton fractionation. Med Phys. 2013;40(1):011705. doi:10.1118/1.4769417.
  • Boerma M, Nelson GA, Sridharan V, Mao X-W, Koturbash I, Hauer-Jensen M. Space radiation and cardiovascular disease risk. World J Cardiol. 2015;7(12):882–888. doi:10.4330/wjc.v7.i12.882.
  • NCRP, Radiation Exposure in Space and the Potential for Central Nervous System Effects: Phase II; NCRP Report No. 183: . Bethesda: National Council on Radiation Protection and Measurements; 2019.
  • Zeitlin C, Narici L, Rios R, et al. Comparisons of high-linear energy transfer spectra on the ISS and in deep space. Space Weather. 2019;17(3):396–418. doi:10.1029/2018SW002103.
  • Beauchamp TL, Childress JF. Principles of Biomedical Ethics. New York: Oxford University Press, 2001.
  • Durante M, George K, Gialanella G, et al. Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material. Radiat Res. 2005;164(4 Pt 2):571–576. doi:10.1667/rr3362.1.
  • Durante M, George K, Wu H, Cucinotta F. Karyotypes of human lymphocytes exposed to high-energy iron ions. Radiat Res. 2002;158(5):581–590. doi:10.1667/0033-7587(2002)158[0581:KOHLET]
  • Wang H, Wang Y. Heavier ions with a different linear energy transfer spectrum kill more cells due to similar interference with the Ku-dependent DNA repair pathway. Radiat Res. 2014;182(4):458–461. doi:10.1667/RR13857.1.
  • Kennedy AR, Davis JG, Carlton W, Ware JH. Effects of dietary antioxidant supplementation on the development of malignant lymphoma and other neoplastic lesions in mice exposed to proton or iron-ion radiation. Radiat Res. 2008;169(6):615–625. doi:10.1667/RR1296.1.
  • Wambi CO, Sanzari JK, Sayers CM, et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat Res. 2009;172(2):175–186. doi:10.1667/RR1708.1.
  • Simonsen LC, Slaba TC, Guida P, Rusek A. NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLoS Biol. 2020;18(5):e3000669. doi:10.1371/journal.pbio.3000669.
  • Elmore E, Lao X, Kapadia R, Swete M, Redpath J. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res. 2011;176(3):291–302. doi:10.1667/rr2646.1.
  • Norbury JW, Schimmerling W, Slaba TC, et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sci Space Res (Amst). 2016; 8:38–51. doi:10.1016/j.lssr.2016.02.001.
  • Slaba TC, Blattnig SR, Norbury JW, Rusek A, La Tessa C, Walker SA. GCR simulator reference field and a spectral approach for laboratory simulation. NASA Technical Paper, 2015, 218698, 2015.