239
Views
2
CrossRef citations to date
0
Altmetric
Articles

Trace elements exposure and risk in age-related eye diseases: a systematic review of epidemiological evidence

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon

References

  • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159):1789–1858.
  • World Health Organisation. World report on vision. Geneva, Switzerland: WHO; 2019.
  • Flaxman SR, Bourne R, Resnikoff S, et al. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e1234. doi:10.1016/S2214-109X(17)30393-5.
  • Glynn RJ, Rosner B, Christen WG. Evaluation of risk factors for cataract types in a competing risks framework. Ophthalmic Epidemiol. 2009;16(2):98–106. doi:10.1080/09286580902737532.
  • Guedes G, Tsai JC, A. Loewen N. Glaucoma and Aging. CAS. 2011;4(2):110–117. doi:10.2174/1874609811104020110.
  • National Academies of Sciences, Engineering, and Medicine (NASEM). Making Eye Health a Population Health Imperative: Vision for Tomorrow. Welp A, Woodbury RB, McCoy MA, Teutsch SM, eds. Washington, DC: National Academies Press; 2016:587.
  • Saxena R, Srivastava S, Trivedi D, Anand E, Joshi S, Gupta SK. Impact of environmental pollution on the eye. Acta Ophthalmol Scand. 2003; 81(5):491–494. doi:10.1034/j.1600-0420.2003.00119.x.
  • Shubhricaa P. Effect of environment on eyes: a review. Ind J Clin Pract. 2013;24(4):381–384.
  • Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–182.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–164.
  • Wills NK, Kalariya N, Sadagopa Ramanujam VM, et al. Human retinal cadmium accumulation as a factor in the etiology of age-related macular degeneration. Exp Eye Res. 2009;89(1):79–87. doi:10.1016/j.exer.2009.02.014.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72. doi:10.2478/intox-2014-0009.
  • Chang L, Shen S, Zhang Z, Song X, Jiang Q. Study on the relationship between age and the concentrations of heavy metal elements in human bone. Ann Transl Med. 2018;6(16):320–320. doi:10.21037/atm.2018.08.09.
  • Schaumberg DA, Mendes F, Balaram M, Dana MR, Sparrow D, Hu H. Accumulated lead exposure and risk of age-related cataract in men. JAMA. 2004;292(22):2750–2754. doi:10.1001/jama.292.22.2750.
  • Yuki K, Dogru M, Imamura Y, Kimura I, Ohtake Y, Tsubota K. Lead accumulation as possible risk factor for primary open-angle glaucoma. Biol Trace Elem Res. 2009;132(1-3):1–8. doi:10.1007/s12011-009-8376-z.
  • Nigra AE, Ruiz-Hernandez A, Redon J, Navas-Acien A, Tellez-Plaza M. Environmental metals and cardiovascular disease in adults: a systematic review beyond lead and cadmium. Curr Environ Health Rep. 2016;3(4):416–433. doi:10.1007/s40572-016-0117-9.
  • Pamphlett R, Bishop DP, Kum Jew S, Doble PA. Age-related accumulation of toxic metals in the human locus ceruleus. PLoS One 2018;13(9):e0203627. doi:10.1371/journal.pone.0203627.
  • Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017;6(2):24. doi:10.3390/antiox6020024.
  • Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem. 2012;287(17):13541–13548. doi:10.1074/jbc.R111.312181.
  • Konerirajapuram NS, Coral K, Punitham R, Sharma T, Kasinathan N, Sivaramakrishnan R. Trace elements iron, copper and zinc in vitreous of patients with various vitreoretinal diseases. Indian J Ophthalmol. 2004;52(2):145–148.
  • Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol. 2013;58(6):585–609. doi:10.1016/j.survophthal.2012.12.002.
  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. 2015;16(12):29592–29630. doi:10.3390/ijms161226183.
  • Aoki A, Inoue M, Nguyen E, et al. Dietary n-3 fatty acid, α-tocopherol, zinc, vitamin D, vitamin C, and β-carotene are associated with age-related macular degeneration in Japan. Sci Rep. 2016;6:20723.
  • Gorusupudi A, Nelson K, Bernstein PS. The age-related eye disease 2 study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8(1):40–53. doi:10.3945/an.116.013177.
  • Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev. 2018;2018:1–11. doi:10.1155/2018/9156285.
  • Prasad S, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants. 2019;8(6):164. doi:10.3390/antiox8060164.
  • Bede-Ojimadu O, Amadi CN, Orisakwe OE. Blood lead levels in women of child-bearing age in Sub-Saharan Africa: a systematic review. Front Public Health. 2018;6:367. doi:10.3389/fpubh.2018.00367.
  • Forsyth JE, Saiful Islam M, Parvez SM, et al. Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: a case control study. Environ Res. 2018;166:1–9. doi:10.1016/j.envres.2018.04.019.
  • Ericson B, Dowling R, Dey S, et al. A meta-analysis of blood lead levels in India and the attributable burden of disease. Environ Int. 2018;121(1):461–470. doi:10.1016/j.envint.2018.08.047.
  • Naka KS, Mendes L, De Queiroz TKL, et al. A comparative study of cadmium levels in blood from exposed populations in an industrial area of the Amazon, Brazil. Sci Total Environ. 2020;698:134309. doi:10.1016/j.scitotenv.2019.134309.
  • Guallar E, Tellez-Plaza M. Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol. 2017;46(6):1903–1912.
  • Tsoi MF, Cheung CL, Cheung TT, Cheung BM. Continual decrease in blood lead level in Americans: United States National Health Nutrition and Examination Survey 1999-2014. Am J Med. 2016;129(11):1213–1218. doi:10.1016/j.amjmed.2016.05.042.
  • Dignam T, Kaufmann RB, Le Stourgeon L, Brown MJ. Control of lead sources in the United States, 1970-2017: public health progress and current challenges to eliminating lead exposure. J Public Health Manag Pract. 2019;25(1):S13–S22. doi:10.1097/PHH.0000000000000889.
  • Tellez-Plaza M, Navas-Acien A, Caldwell KL, Menke A, Muntner P, Guallar E. Reduction in cadmium exposure in the United States population, 1988-2008: the contribution of declining smoking rates. Environ Health Perspect. 2012;120(2):204–209. doi:10.1289/ehp.1104020.
  • Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 2012;7(11):e50568. doi:10.1371/journal.pone.0050568.
  • Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(Suppl. 2):22–33. doi:10.1159/000371618.
  • Grashow R, Sparrow D, Hu H, Weisskopf MG. Cumulative lead exposure is associated with reduced olfactory recognition performance in elderly men: The Normative Aging Study. Neurotoxicology. 2015;49:158–164. doi:10.1016/j.neuro.2015.06.006.
  • Ding N, Wang X, Weisskopf MG, et al. Lead-related genetic loci, cumulative lead exposure and incident coronary heart disease: the normative aging study. PLos One 2016;11(9):E0161472. doi:10.1371/journal.pone.0161472.
  • Frazzoli C, Mantovani A. Toxicological risk factors in the burden of malnutrition: the case of nutrition (and risk) transition in sub-Saharan Africa. Food Chem Toxicol. 2020;146:111789. doi:10.1016/j.fct.2020.111789.
  • Erie JC, Good JA, Butz JA, Hodge DO, Pulido JS. Urinary cadmium and age-related macular degeneration. Am J Ophthalmol. 2007;144(3):414–418. doi:10.1016/j.ajo.2007.05.020.
  • Wu EW, Schaumberg DA, Park SK. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008. Environ Res. 2014;133:178–184. doi:10.1016/j.envres.2014.05.023.
  • Gungor DE, Yulek F, Serkant U, Toklu Y, Hocaoğlu A, Şimsek Ş. Blood lead and cadmium in age related macular degeneration in a Turkish urban population. J Trace Elem Med Biol. 2018;48:16–19. doi:10.1016/j.jtemb.2018.02.019.
  • Post M, Lubiński W, Lubiński J, et al. Serum selenium levels are associated with age-related cataract. Annals of Agriculture and Environmental Medicine Blood lead and cadmium in age related macular degeneration in a Turkish urban population. J Trace Elem Med Biol. 2018;25(3):443–448.
  • Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH. Dietary antioxidants and primary prevention of age-related macular degeneration: systematic review and meta-analysis. BMJ. 2007;335(7623):755. doi:10.1136/bmj.39350.500428.47.
  • Evans J. Antioxidant supplements to prevent or slowdown the progression of AMD: a systematic review and meta-analysis. Eye. 2008;22(6):751–760. doi:10.1038/eye.2008.100.
  • Vishwanathan R, Chung M, Johnson EJ. A systematic review on zinc for the prevention and treatment of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(6):3985–3998. doi:10.1167/iovs.12-11552.
  • Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2017;7(7):CD000254.
  • Junemann AG, Stopa P, Michalke B, et al. Levels of aqueous humour trace elements in patients with non-exudative age-related macular degeneration: a case-control study. PLoS One. 2013;8(2):e56734. doi:10.1371/journal.pone.0056734.
  • Park SJ, Lee JH, Woo SJ, Kang SW, Park KH. Epidemiologic Survey Committee of Korean Ophthalmologic Society. Five heavy metallic elements and age-related macular degeneration: Korean National Health and Nutrition Examination Survey, 2008-2011. Ophthalmology. 2015;122(1):129–137. doi:10.1016/j.ophtha.2014.07.039.
  • Kim MH, Zhao D, Cho J, Guallar E. Cadmium exposure and age-related macular degeneration. J Expo Sci Environ Epidemiol. 2016;26(2):214–218. doi:10.1038/jes.2014.75.
  • Wang W, Schaumberg DA, Park SK. Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int J Hyg Environ Health. 2016;219(8):850–856. doi:10.1016/j.ijheh.2016.07.012.
  • Ceylan OM, Can Demirdöğen B, Mumcuoğlu T, Aykut O. Evaluation of essential and toxic trace elements in pseudo-exfoliation syndrome and pseudo-exfoliation glaucoma. Biol Trace Elem Res. 2013;153(1-3):28–34. doi:10.1007/s12011-013-9644-5.
  • Hohberger B, Chaudhri MA, Michalke B, et al. Levels of aqueous humor trace elements in patients with open-angle glaucoma. J Trace Elem Med Biol. 2018;45:150–155. doi:10.1016/j.jtemb.2017.10.003.
  • Bocca B, Forte G, Pisano A, et al. A pilot study to evaluate the levels of aqueous humor trace elements in open-angle glaucoma. J Trace Elem Med Biol. 2020;61:126560. doi:10.1016/j.jtemb.2020.126560.
  • Shukla N, Moitra JK, Trivedi RC. Determination of lead, zinc, potassium, calcium, copper and sodium in human cataract lenses. Sci Total Environ. 1996;181(2):161–165. doi:10.1016/0048-9697(95)05006-X.
  • Rai PSK, Deokar SA, Yadav RR, Shelke S, Sundharan S. Serum zinc and copper levels: a marker of disease activity in senile cataract patients. Int J Res Med Sci. 2017;5(8):3697–3700. doi:10.18203/2320-6012.ijrms20173588.
  • Wysokinski D, Danisz K, Pawlowska E, et al. Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration. Acta Biochim Pol. 2015;62(2):177–184. doi:10.18388/abp.2014_843.
  • Colak E, Zorić L, Radosavljevic A. The association of serum iron binding proteins and the antioxidant parameter levels in age-related macular degeneration. Curr Eye Res. 2018;43(5):659–665.
  • Hou X, Hou Y. Determination of 19 elements in human eye lenses. Biol Trace Elem Res. 1996;55(1-2):89–98. doi:10.1007/BF02784171.
  • Firat PG, Demirel EE, Dikci S, Kuku I, Genc O. Evaluation of iron deficiency anemia frequency as a risk factor in glaucoma. Anemia. 2018;2018:1–5. doi:10.1155/2018/1456323.
  • Elis A, Ferencz JR, Gilady G, Livne A, Assia EI, Lishner M. Is serum ferritin high in patients with diabetic retinopathy? A controlled study. Endocr Res. 2004;30(2):141–147. doi:10.1081/ERC-200027354.
  • Hamdan HZ, Nasser NM, Adam AM, Saleem MA, Elamin MI. Serum magnesium, iron and ferritin levels in patients with diabetic retinopathy attending Makkah Eye Complex, Khartoum, Sudan. Biol Trace Elem Res. 2015;165(1):30–34. doi:10.1007/s12011-015-0236-4.
  • Hwang HS, Lee SB, Jee D. Association between blood lead levels and age-related macular degeneration. PLoS One. 2015;10(8):e0134338. doi:10.1371/journal.pone.0134338.
  • Wang W, Moroi S, Bakulski K, et al. Bone lead levels and risk of incident primary open-angle glaucoma: The VA Normative Aging Study. Environ Health Perspect. 2018;126(8):087002. doi:10.1289/EHP3442.
  • Elmorsy E, Parrey M. Association of high blood lead level and diabetic retinopathy among Saudi diabetic patients. Toxicol Environ Health Sci. 2020;12(1):91–97. doi:10.1007/s13530-020-00046-6.
  • Mayer MJ, van Kuijk FJ, Ward B, Glucs A. Whole blood selenium in exudative age-related maculopathy. Acta Ophthalmol. Scand. 1998;76(1):62–67. doi:10.1034/j.1600-0420.1998.760111.x.
  • Lemire M, Fillion M, Frenette B, et al. Selenium and mercury in the Brazilian Amazon: opposing influences on age-related cataracts. Environ Health Perspect. 2010;118(11):1584–1589. doi:10.1289/ehp.0901284.
  • Jünemann AGM, Michalke B, Lucio M, et al. Aqueous humor selenium level and open-angle glaucoma. J Trace Elem Med Biol. 2018;50:67–72. doi:10.1016/j.jtemb.2018.06.010.
  • Chakraborty I, Kunti S, Bandyopadhyay M, Dasgupta A, Chattopadhyay GD, Chakraborty S. Evaluation of serum zinc level and plasma SOD activity in senile cataract patients under oxidative stress. Indian J Clin Biochem. 2007;22(2):109–113. doi:10.1007/BF02913326.
  • Luo YY, Zhao J, Han XY, Zhou XH, Wu J, Ji LN. Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes. Chin Med J. 2015; 128(24):3276–3282. doi:10.4103/0366-6999.171357.
  • Elhaj MSM, ElRahman SFA, Abdrabo AA. Comparative study of serum zinc and magnesium levels among type 2 diabetic Sudanese patients with and without retinopathy complications. SMJ. 2016;52(2):75–80. doi:10.12816/0030341.
  • Aberami S, Nikhalashree S, Bharathselvi M, Biswas J, Sulochana KN, Coral K. Elemental concentrations in Choroid-RPE and retina of human eyes with age-related macular degeneration. Exp Eye Res. 2019;186:107718. doi:10.1016/j.exer.2019.107718.
  • Erie JC, Good JA, Butz JA. Excess lead in the neural retina in age-related macular degeneration. Am J Ophthalmol. 2009;148(6):890–894. doi:10.1016/j.ajo.2009.07.001.
  • Erie JC, Good JA, Butz JA, Pulido JS. Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am J Ophthalmol. 2009;147(2):276–282. doi:10.1016/j.ajo.2008.08.014.
  • Biesemeier A, Yoeruek E, Eibl O, Schraermeyer U. Iron accumulation in Bruch's membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res. 2015;137:39–49. doi:10.1016/j.exer.2015.05.019.
  • Lengyel I, Flinn JM, Pető T, et al. High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res. 2007;84(4):772–780. doi:10.1016/j.exer.2006.12.015.
  • Cekic O. Copper, lead, cadmium and calcium in cataractous lenses. Ophthalmic Res. 1998;30(1):49–53. doi:10.1159/000055454.
  • Cekiç O, Bardak Y, Totan Y, et al. Nickel, chromium, manganese, iron and aluminum levels in human cataractous and normal lenses. Ophthalmic Res. 1999;31(5):332–336. doi:10.1159/000055555.
  • Kim EC, Cho E, Jee D. Association between blood cadmium level and age-related macular degeneration in a representative Korean population. Invest Ophthalmol Vis Sci. 2014;55(9):5702–5710. doi:10.1167/iovs.14-14774.
  • Khoo HE, Ng HS, Yap WS, Goh H, Yim HS. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants. 2019;8(4):85. doi:10.3390/antiox8040085.
  • Pico C, Serra F, Rodriguez M, Keijer J, Palou A. Biomarkers of nutrition and health: new tools for new approaches. Nutrients. 2019;11(5):1092. doi:10.3390/nu11051092.
  • Nizami AA, Gulani AC. Cataract. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK539699/.
  • Hu H, Shih R, Rothenberg S, Schwartz BS. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect. 2007;115(3):455–462. doi:10.1289/ehp.9783.
  • Wills NK, Ramanujam VM, Chang J, et al. Cadmium accumulation in the human retina: effects of age, gender, and cellular toxicity. Exp Eye Res. 2008;86(1):41–51. doi:10.1016/j.exer.2007.09.005.
  • Kalariya NM, Nair B, Kalariya DK, Wills NK, van Kuijik JGM. Cadmium-induced induction of cell death in human lens epithelial cells: implication to smoking associated cataractogenesis. Toxicol Lett. 2010;198(1):56–62. doi:10.1016/j.toxlet.2010.04.021.
  • Erie JC, Butz JA, Good JA, Erie EA, Burritt MF, Cameron JD. Heavy metal concentrations in human eyes. Am J Ophthalmol. 2005;139(5):888–893. doi:10.1016/j.ajo.2004.12.007.
  • Grubb BR, DriscollSM, Bentley PJ. Exchanges of lead in vitro by the rabbit crystalline lens. Exp Eye Res. 1986;43(2):259–266. doi:10.1016/S0014-4835(86)80094-X.
  • Neal R, Aykin-Burns N, Ercal N, Zigler JS. Jr. Pb2+ exposure alters the lens alpha A-crystallin protein profile in vivo and induces cataract formation in lens organ culture. Toxicology. 2005;212(1):1–9. doi:10.1016/j.tox.2005.03.015.
  • Elmorsy E, Parrey MUR, Al-Ghafari A. Lead-induced bioenergetics disruption and oxidative stress in cultured human retinal pigment epithelial cells. Pak J Med Health Sci. 2020;13(4):1037–1041.
  • Wieringa FT, Dijkhuizen MA, Fiorentino M, Laillou A, Berger J. Determination of zinc status in humans: which indicator should we use? Nutrients. 2015;7(5):3252–3263. doi:10.3390/nu7053252.
  • King JC, Brown KH, Gibson RS, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2015;146(4):858S–885S. doi:10.3945/jn.115.220079.
  • Lynch S, Pfeiffer CM, Georgieff MK, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148(suppl_1):1001S–1067S. doi:10.1093/jn/nxx036.
  • Cabrera MP, Chihuailaf RH. Antioxidants and the integrity of ocular tissues. Vet Med Int. 2011;2011:1–8. doi:10.4061/2011/905153.
  • Wills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ. Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res. 2008;87(2):80–88. doi:10.1016/j.exer.2008.04.013.
  • Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics. 2014;6(2):189–200. doi:10.1039/C3MT00291H.
  • García-Castiñeiras S. Iron, the retina and the lens: a focused review. Exp Eye Res. 2010;90(6):664–678. doi:10.1016/j.exer.2010.03.003.
  • Gilbert R, Peto T, Lengyel I, Emri E. Zinc nutrition and inflammation in the aging retina. Mol Nutr Food Res. 2019;63(15):e1801049. doi:10.1002/mnfr.201801049.
  • Garner B, Roberg K, Qian M, Brunk UT, Eaton JW, Truscott RJ. Redox availability of lens iron and copper: implications for HO* generation in cataract. Redox Rep. 1999;4(6):313–315. doi:10.1179/135100099101535007.
  • Avunduk AM, Yardimci S, Avunduk MC, Kurnaz L. Cadmium and iron accumulation in rat lens after cigarette smoke exposure and the effect of vitamin E (a-tocopherol) treatment. Curr Eye Res. 1999;18(6):403–407. doi:10.1076/ceyr.18.6.403.5268.
  • Quintanar L, Domínguez-Calva JA, Serebryany E, et al. Copper and zinc ions specifically promote nonamyloid aggregation of the highly stable human γ-D crystallin. ACS Chem Biol. 2016;11(1):263–272. doi:10.1021/acschembio.5b00919.
  • Ramkumar S, Fan X, Wang B, Yang S, Monnier VM. Reactive cysteine residues in the oxidative dimerization and Cu2+ induced aggregation of human γD-crystallin: implications for age-related cataract. Biochim Biophys Acta Mol Basis Dis. 2018;1864(11):3595–3604. doi:10.1016/j.bbadis.2018.08.021.
  • Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, Amero C. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods. Peer J. 2020;8:e9178. doi:10.7717/peerj.9178.
  • Hahn P, Ying GS, Beard J, Dunaief JL. Iron levels in human retina: sex difference and increase with age. Neuroreport. 2006;17(17):1803–1806. doi:10.1097/WNR.0b013e3280107776.
  • Hahn P, Qian Y, Dentchev T, et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration.Proc Natl Acad Sci USA. 2004;101(38):13850–13855. doi:10.1073/pnas.0405146101.
  • Chen H, Liu B, Lukas TJ, Suyeoka G, Wu G, Neufeld AH. Changes in iron-regulatory proteins in the aged rodent neural retina. Neurobiol Aging. 2009;30(11):1865–1876. doi:10.1016/j.neurobiolaging.2008.01.002.
  • Dunaief JL. Iron induced oxidative damage as a potential factor in age-related macular degeneration: the Cogan lecture. Invest Ophthalmol Vis Sci. 2006;47(11):4660–4664. doi:10.1167/iovs.06-0568.
  • He X, Hahn P, Iacovelli J, et al. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res. 2007;26(6):649–673. doi:10.1016/j.preteyeres.2007.07.004.
  • Loh A, Hadziahmetovic M, Dunaief JL. Iron homeostasis and eye disease. Biochim Biophys Acta. 2009;1790(7):637–649. doi:10.1016/j.bbagen.2008.11.001.
  • Guo LY, Alekseev O, Li Y, Song Y, Dunaief JL. Iron increases APP translation and amyloid-beta production in the retina. Exp Eye Res. 2014;129:31–37. doi:10.1016/j.exer.2014.10.012.
  • Ratnayaka JA, Serpell LC, Lotery AJ. Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye. 2015;29(8):1013–1028. doi:10.1038/eye.2015.100.
  • Flohé L. Selenium, selenoproteins and vision. Dev Ophthalmol. 2005;38:89–102.
  • Dai J, Liu H, Zhou J, Huang K. Selenoprotein R protects human lens epithelial cells against D-galactose-induced apoptosis by regulating oxidative stress and endoplasmic reticulum stress. Int J Mol Sci. 2016;17(2):231. doi:10.3390/ijms17020231.
  • Reddy VN, Giblin FJ, Lin LR, et al. Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice. Invest Ophthalmol Vis Sci. 2001;42(13):3247–3255.
  • Christen WG, Glynn RJ, Gaziano JM, et al. Age-related cataract in men in the selenium and vitamin E cancer prevention trial eye endpoints study: a randomized clinical trial. JAMA Ophthalmol. 2015;133(1):17–24. doi:10.1001/jamaophthalmol.2014.3478.
  • Landrum JT, Parker A, Cal Y, Ruiz RA, Bone RA. Selenium distribution in the human retina. Invest Ophthalmol Vis Sci. 2002;43:727.
  • Satarug S, Kikuchi M, Wisedpanichkij R, et al. Prevention of cadmium accumulation in retinal pigment epithelium with manganese and zinc. Exp Eye Res. 2008;87(6):587–593. doi:10.1016/j.exer.2008.09.014.
  • Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol. 2012;3(119):1–17. doi:10.3389/fphar.2012.00119.
  • Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z. Zinc and the eye. J Am Coll Nutr. 2001;20(2):106–118. doi:10.1080/07315724.2001.10719022.
  • Redenti S, Ripps H, Chappell RL. Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res. 2007;85(4):580–584. doi:10.1016/j.exer.2007.07.017.
  • Gleim S, Stojanovic A, Arehart E, Byington D, Hwa J. Conserved rhodopsin intradiscal structural motifs mediate stabilization: effects of zinc. Biochemistry. 2009;48(8):1793–1800. doi:10.1021/bi800968w.
  • O’Dell BL. Role of zinc in plasma membrane function. J Nutr. 2000;130:1432S–1436S.
  • Hyun HJ, Sohn JH, Ha DW, Ahn YH, Koh JY, Yoon YH. Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2001;42:460–465.
  • Age-Related Eye Disease Study Research Group.A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no.8. Arch Ophthal. 2001;119:1417–1436.
  • Ho L, van LR, Witteman JC, et al. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam study. Arch Ophthalmol. 2011;129(6):758–766. doi:10.1001/archophthalmol.2011.141.
  • Lengyel I, Peto T. Cure or cause: opposing roles for zinc in age-related macular degeneration. Expert Rev Ophthalmol. 2008;3(1):1–4. doi:10.1586/17469899.3.1.1.
  • Li Y, Andereggen L, Yuki K, et al. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci USA. 2017;114(2):E209–E218. doi:10.1073/pnas.1616811114.
  • Trakhtenberg EF, Li Y, Feng Q, et al. Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Exp Neurol. 2018;300:22–29. doi:10.1016/j.expneurol.2017.10.025.
  • Stein JD, Kim DS, Niziol LM, et al. Differences in rates of glaucoma among Asian Americans and other racial groups, and among various Asian ethnic groups. Ophthalmology. 2011;118(6):1031–1037. doi:10.1016/j.ophtha.2010.10.024.
  • Vanderbeek BL, Zacks DN, Talwar N, Nan B, Musch DC, Stein JD. Racial differences in age-related macular degeneration rates in the United States: a longitudinal analysis of a managed care network. Am J Ophthalmol. 2011;152(2):273–282. doi:10.1016/j.ajo.2011.02.004.
  • Rudnicka AR, Kapetanakis VV, Jarrar Z, et al. Incidence of late-stage age-related macular degeneration in American Whites: systematic review and meta-analysis. Am J Ophthalmol. 2015;160(1):85–93. doi:10.1016/j.ajo.2015.04.003.
  • Cruickshanks KJ, Nondahl DM, Johnson LJ, et al. Generational differences in the 5-year incidence of age-related macular degeneration. JAMA Ophthalmol. 2017;135(12):1417–1423. doi:10.1001/jamaophthalmol.2017.5001.
  • Colijn JM, Buitendijk G, Prokofyeva E, et al. Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology. 2017;124(12):1753–1763. doi:10.1016/j.ophtha.2017.05.035.
  • Bourne R, Jonas JB, Bron AM, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. Br J Ophthalmol. 2018;102(5):575–585. doi:10.1136/bjophthalmol-2017-311258.
  • Bastawrous A, Mathenge W, Peto T, et al. Six-year incidence and progression of age-related macular degeneration in Kenya: Nakuru Eye Disease Cohort Study. JAMA Ophthalmol. 2017;135(6):631–638. doi:10.1001/jamaophthalmol.2017.1109.
  • Jayashree MP, Harika JVL, Arathi C, Patil BA, Niveditha RK. Prevalence of age related macular degeneration in a tertiary care centre. J Clin Res Ophthalmol. 2019;6(1):007–010.
  • Kyari F, Entekume G, Rabiu M, et al. A population-based survey of the prevalence and types of glaucoma in Nigeria: results from the Nigeria National Blindness and Visual Impairment Survey. BMC Ophthalmol. 2015;15(1):176. doi:10.1186/s12886-015-0160-6.
  • Chan EW, Li X, Tham YC, et al. Glaucoma in Asia: regional prevalence variations and future projections. Br J Ophthalmol. 2016;100(1):78–85. doi:10.1136/bjophthalmol-2014-306102.
  • Song P, Wang J, Bucan K, Theodoratou E, Rudan I, Chan KY. National and subnational prevalence and burden of glaucoma in China: a systematic analysis. J Glob Health. 2017;7(2):020705.
  • Nuertey BD, Amissah-Arthur KN, Addai J, et al. Prevalence, causes, and factors associated with visual impairment and blindness among registered pensioners in Ghana. J Ophthalmol. 2019;2019:1–10. doi:10.1155/2019/1717464.
  • Fuller-Thomson E. Generational differences in lifetime exposure to lead and the decreasing incidence of age-related macular degeneration. JAMA Ophthalmol. 2018;136(8):958. doi:10.1001/jamaophthalmol.2018.2163.
  • Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):65. doi:10.3390/toxics6040065.
  • Cheng AC, Pang CP, Leung AT, Chua JK, Fan DS, Lam DS. The association between cigarette smoking and ocular diseases. Hong Kong Med J. 2000;6(2):195–202.
  • Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye. 2005;19(9):935–944. doi:10.1038/sj.eye.6701978.
  • Khan JC, Thurlby DA, Shahid H, et al. Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation. Br J Ophthalmol. 2006;90(1):75–80. doi:10.1136/bjo.2005.073643.
  • Sehgal M, Rizwan SA, Krishnan A. Disease burden due to biomass cooking-fuel-related household air pollution among women in India. Glob Health Action. 2014;7(1):25326. doi:10.3402/gha.v7.25326.
  • Shin J, Lee H, Kim H. Association between exposure to ambient air pollution and age-related cataract: a nationwide population-based retrospective cohort study. IJERPH. 2020;17(24):9231. doi:10.3390/ijerph17249231.
  • Langford-Smith A, Tilakaratna V, Lythgoe PR, Clark SJ, Bishop PN, Day AJ. Age and smoking related changes in metal ion levels in human lens: implications for cataract formation. PLoS One 2016;11(1):e0147576. doi:10.1371/journal.pone.0147576.
  • Zhou F, Xie J, Zhang S, et al. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway. Ecotoxicol Environ Saf. 2018;163:674–684. doi:10.1016/j.ecoenv.2018.07.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.